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Abstract

In low level vision problems such as image restoration and optical flow estimation the desired output is an
image consisting of high dimensional data arranged in a two dimensional structure. Most of those prob-
lems are ill-posed, meaning that additional assumptions on the structure of data need to be incorporated
in methods that solve them. The high dimension and rich structure of images make it hard to develop
handcrafted methods, and call for a data-driven approach where all assumptions are directly learned from
data. It is therefore natural to use machine learning for low level vision, allowing the structure of images
to be automatically discovered and exploited. However the use of machine learning in low level vision
is still not delivering the anticipated improvements. Although for easier problems such as image restora-
tion it has outperformed the handcrafted methods, for harder problems like optical flow estimation the
performance of both handcrafted methods and data-driven methods is still not satisfactory.

Machine learning can be used in different ways. In the generative approach, the assumptions about the
structure of data are formulated as probabilistic models and learned from data. The estimation is then cast
as an inference problem using Bayes’ rule. In the discriminative approach, a predictor is learned directly
for the estimation problem, avoiding the need to perform an inference process at test time. The advantage
of generative learning is that sometimes it makes it more natural to incorporate prior knowledge about
the structure of the problem, allowing faster training and a modular usage of the predictor where different
components can be changed at test time. The advantage of the discriminative approach is that it usually
results in a faster predictor. This is because while the inference of a generative model typically involves
a hard optimization problem at test time, in the discriminative approach all the optimization is performed
in advance, by finding the best predictor for a given architecture and running time constraints.

In the work presented here, we demonstrate the different ways in which machine learning can be
used for low level vision problems. By taking a more general view on the generative approach, it can
be divided to three components: (1) the prior which models the structure of the hidden data we want to
estimate, (2) the likelihood which models the generation of the observed input given the hidden data, and
(3) the inference process which uses the prior and likelihood to estimate the hidden data.

Our results are presented in four papers. In the first and second papers we show how the assumptions
made by different handcrafted optical flow methods can be extracted and formulated as probabilistic
models of the prior and likelihood. We then evaluate the different models and show how they can be
improved by learning them directly from ground-truth data. In the third paper we show how the inference
process can be learned from data for image restoration. We show that this results in a predictor that
has the advantages of both the discriminative and generative approaches by being fast at test time while
retaining the modularity property that allows the same predictor to be used for different tasks. The forth
paper deals with the problem of enhancing the depth map output of RGBD cameras. We show that by
evaluating and learning prior models on ground-truth data we can improve the state-of-the-art in depth
enhancement.
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Chapter 1

Introduction

1.1 Low level vision

Low level vision is a set of vision problems including image restoration, depth estimation, optical flow
estimation, and more. In such problems the goal is more related to the structure of the image rather than
to its semantic content, and the resulting output is in itself an image, consisting of high dimensional data
arranged in a two dimensional structure.

We start by describing three different low level vision problems, and methods to solve them. The
methods we present in this section are handcrafted, i.e. they were engineered by computer vision re-
searchers rather than learned from data. Low level vision is usually an ill-posed problem, which means
that some prior assumptions on the output should be incorporated in the solution method. Typical assump-
tions are the self-similarity of local patches within the output image, or the smoothness of the output. Such
assumptions are sometimes formulated as penalties in an energy function that is being minimized.

Since low level vision has been a topic of much research in the last four decades, many good methods
have been developed. While handcrafted methods have achieved a good level for some of the easier
problems such as image denoising, for more challenging problems like optical flow estimation the results
are still far from being satisfactory. After reviewing some examples of handcrafted methods, in the
following sections we present different methods based on machine learning approaches. In recent years,
machine learning and data-driven methods have been able to overcome many challenges in computer
vision. A prime example is the success in classifying objects in an image using deep neural networks that
were trained discriminatively over a huge amount of labeled data [27]. This success of machine learning
is still not replicated for low level vision problems. As we will see, although machine learning approaches
have achieved state-of-the-art performance for image restoration, for harder problems it is still lacking in
performance.

In our work we aim to get a better understanding of the role of machine learning in problems with
high dimensional output and rich structure like in low level vision. The hope is that understanding the
different ways in which machine learning can be used, will ultimately lead to improved methods to solve
low level vision problems.
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Figure 1.1: Image restoration. The original image (left), and examples of different types of corruption in
the input image: noise, blur, and missing parts.

1.1.1 Image restoration

Perhaps the most basic low level vision problem is image restoration, where one needs to recover the
original image given a corrupted version of it. The corruption can be of different kinds including additive
noise, blur and missing parts of the image (figure 1.1). Although usually the corruption model is unknown
(sometimes called “blind” image restoration), here we focus on the easier problem and assume that it is
given (“non-blind” image restoration). In what follows we describe some methods for image denoising,
and image deblurring.

Image denoising: One way to remove the noise from noisy images is using the coring approach [39,
21]. This approach takes a wavelet transform of the given image, and zeros out the wavelet coefficients
that are smaller than some threshold. A more recent method that is very successful and popular is BM3D
[9]. The method is based on the assumption that small patches in the clean image appear several times
within the image. It works by forming three dimensional blocks consisting of similar patches in the
image, and then running a filter on the blocks in a manner that cancels noise and preserves the signal,
which is the original image. It is an extension of the non-local means method [6] which simply averages
similar patches.

Image deblurring: Methods for image deblurring typically work by formulating and minimizing an
energy function [38, 18, 14, 28, 26]. The energy function contains a data term and a smoothness term
such as the following:

J(x) = ρd (b(x)− y) + λ
∑

ij∈adj
ρs(xi − xj) (1.1)

The data term encourages the output image x to be such that under the given blur process b(x) would
be similar to the input blurry image y. The blur process is sometimes formulated as a convolution with a
blur kernel, i.e. b(x) = Kx where the matrix K is a 2D convolution matrix based on the blur kernel. The
smoothness term serves as a regularization of this ill-posed problem, and encourages adjacent pixels in x
to be similar under some measure.
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Figure 1.2: Optical Flow estimation. Using the MPI-Sintel dataset of synthetic images [8] allows for high
quality ground-truth (middle). Each of The top figures shows two consecutive frames overlayed on top of
each other. The estimated results (bottom) were computed using EpicFlow [36], which first finds sparse
matches of image patches and uses them to initialize a global energy function minimization.

1.1.2 Optical flow estimation

In optical flow estimation we seek to find a flow field, consisting of the two dimensional motion of every
pixel between one frame to another in a video sequence. Figure 1.2 shows some examples of images and
flow fields.

A classic solution to the problem was introduced by Horn and Schunck in 1981 [22], and is based on
minimizing the following energy function:

J(v) = ‖I1 − I→v1
2 ‖22 + λ

∑

ij∈adj
‖vi − vj‖22 (1.2)

where I1 is the first image, v is the flow field containing the motion of every pixel in the image, and I→v1
2

is the second image warped back to the time of I1 according to the proposed motion v. The first term in
the energy function is a data term that formulates the “brightness constancy” assumption, i.e. that when
following each pixel according to its motion from the first image to the second, we should expect to see
the same color or brightness. The second term in the energy function is a smoothness term which serves
as a regularization of this ill-posed problem, stating that all adjacent pixels should have similar motion.

Since both terms in the Horn and Schunck energy function are measured by a quadratic penalty, it is
not robust to outliers, and thus encourages overly smooth solutions. In order to cope with this problem and
allow sudden sharp changes that typically occur in the boundary between objects with different motion
(see figure 1.2), Black and Anandan [3] proposed to replace the quadratic penalty with a more robust one
such as the absolute value.
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Figure 1.3: Depth Enhancement. Data from the NYU Depth dataset [33] collected using the Kinect
RGBD camera. The depth channel (right) is usually of lower quality than the RGB channels (left),
because of noise and missing data (black regions).

One drawback of the energy minimization approach is that the global minimization can be a very
hard problem. This is true specially because the warping function is highly non-convex. Typically the
optimization is performed using Gauss-Newton and coarse-to-fine iterations, but the resulting motion is
still only an approximate solution to the energy function.

In order to avoid the difficulty of finding global solutions, other optical flow methods are based on
local matching of image patches. One of the earliest methods that was proposed by Lucas and Kanade [31]
simply searches for local matches that minimize the sum of square distance of all the pixels in a patch,
and then averages the results for all overlapping patches (or takes only the middle pixel from every patch).
More recent methods use the results of local matches to initialize a global energy minimization, and often
use more sophisticated features for the matching such as SIFT [30] and others [5, 45, 36].

Although much progress has been made in the last decades, the results are still far from being satisfac-
tory. Many methods still rely on minimizing an energy function similar to Horn and Schunck, and typical
problems are over-smoothing of motion boundaries, and failure on small objects with large motions (see
for example the arms and spear in the right image of figure 1.2). One of the differences compared to im-
age restoration, is the difficulty of obtaining ground-truth data. Whereas million of images can be easily
collected from the internet, labeling the motion of every pixel in a video sequence is a much harder prob-
lem. Recently, the usage of synthetic data has gained popularity through the availability of high quality
graphics engines. One example is the MPI-Sintel dataset [8] which is based on an open source animation
movie, and allows access to video sequences along with corresponding flow fields, depth maps and more.

1.1.3 Depth enhancement

The depth of pixels in an image can be estimated using different queues. In stereo imaging for example,
the depth of every pixel is a function of the disparity in its appearance between the left and the right
image. In recent years, RGBD cameras that output both the RGB channels of the image, and a depth map
for all pixels, have become extremely popular. Most cameras extract depth using either the “structured
light” method or the “time-of-flight” method [1]. In structured light cameras, some texture is projected
onto the scene and then captured by the sensor. The depth is then estimated using the deformation of the
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Figure 1.4: The generative learning approach. Left: black arrows illustrate the generative model and red
arrow illustrates the inference process. Right: Models with better log-likelihood on patches (green) lead
to better image restoration (orange). (replotted from [48]).

known texture and the disparity in each pixel similarly to stereo imaging. Time-of-flight cameras also use
the projection of light onto the scene, but the depth is estimated by measuring the time of flight of the
projected signal between the camera and the location of each pixel in the scene.

It is usually the case that the resulting output in both of those methods is in lower quality than the
RGB image. The D channel typically contains noise and has many missing parts due to different kinds of
occlusions and specularities (figure 1.3).

Therefore, there is a need for methods to improve the quality of the depth map. Many such methods
rely on the fact that depth discontinuities occur in the same location as color discontinuities. Following
a similar method for a colorization task [29], one of the most successful methods to enhance the depth
map is based on minimizing an energy function containing a smoothness term which is conditioned on
the color image [33]:

J(d) = ‖m� (d− d̃)‖22 + λ
∑

ij∈adj
wij(c)(di − dj)2 (1.3)

Where d is the depth map, d̃ is the low quality observation containing noise and holes, and m is a mask
consisting of zeros where d̃ contains holes and ones otherwise. The regularization depends on the weights
wij(c) which are conditioned on the color image c:

wij(c) = e−
1
σ2
‖ci−cj‖2 (1.4)

This way pairs of adjacent pixels with a large color difference are given a smaller weight in the regular-
ization and therefore depth boundaries are encouraged to co-occur with color boundaries.

1.2 The generative learning approach

While in the above examples, the method to solve low level vision tasks is based on some assumptions
made about the problem, a machine learning approach would mean that those assumptions are automat-
ically learned from data. In the generative approach one assumes the data was generated by the model
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in figure 1.4, i.e. that first the target variable x is generated, and then the observable input y is generated
based on x. For low level vision, this direction is usually the easier one to model. For example in image
restoration, it is easier to model how a noisy or blurry image y was generated given the clean sharp image
x, than vice-versa. In optical flow, it is easier to model how the second image is generated given the first
image and the motion at every pixel, rather than modeling how the motion is generated given a pair of
images.

Generative learning is usually approached using probabilistic models. Looking at figure 1.4 again we
see that this requires two models (denoted by the black arrows):

1. The prior, Pr(x), which captures properties of the target variable x. For image restoration this
would be a model of natural images; for optical flow this would be a model of flow fields; and for
depth estimation this would be a model of depth maps.

2. The noise/likelihood Pr(y|x), which models how the observed input y is generated given the tar-
get x. For image restoration this would be a model of the noise, or blur. For optical flow this
would model the warping and the generation of the second image (e.g. the deviation from constant
brightness).

Those models are usually trained by maximizing the likelihood over a training set of clean images, which
is equivalent to finding the probability model which best matches the empirical distribution using the
KL-divergence.

Once those two models are given, we can define the inference task using Bayes’ rule:

Pr(x|y) = 1

Z
Pr(y|x)Pr(x) (1.5)

which gives us the full posterior probability of the target variable that interests us x, given the observed
input to the problem y. Calculating the full posterior is usually infeasible for low level vision since x
is a high dimensional image, so one can use either a Bayesian least square (BLS) approach which seeks
the mean of the posterior probability (and also minimizes the expected square loss from the true x), or
alternatively find the value of x that maximizes the posterior probability known as MAP inference.

Using the generative approach with MAP inference is very similar to the handcrafted energy mini-
mization examples we presented in the previous section. Since the normalization constant can be dis-
regarded when maximizing equation 1.5 with respect to x, this becomes equivalent to minimizing the
following energy function:

J(x) = − log Pr(y|x)− logPr(x) (1.6)

where the likelihood model serves as the data term and the prior model serves as the regularization/smoothness
term. In this view it is therefore natural to extend the handcrafted methods to a generative approach where
the energy function terms are learned from data rather than assumed by researchers. The separate model-
ing of the prior and the likelihood allows for different settings in which they are either both learned from
data or only one of them is learned and the other assumed to be given. For example in non-blind image
restoration, a noise model is assumed to be given at inference time, therefore only the prior model needs
to be learned in advance from prior data. In the following we present some examples of prior work using
a generative approach for non-blind image restoration.
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1.2.1 Image priors

As the likelihood term is assumed to be given in non-blind image restoration, what’s left to be found
is a prior model of natural images. The fact that quadratic smoothness terms and Gaussian models in
general were found inappropriate for natural images [34, 42, 35], and the extremely large dimension of
the data, pose a very hard challenge to the problem of statistically modeling images. The work of Zhu
and Mumford [47] that was later extended to the Fields-of-Experts (FoE) model by Roth and Black [40]
are examples of image models that are based on a Markov field on top of local linear filters:

Pr(X) =
1

Z

∏

i

∏

k

eφk(Akx
i) (1.7)

where i is an index of all the local patches xi in the image, and k indexes the different experts which are
based on different linear filters Ak.

The parameters of the model are learned by training on a dataset of clean images. Since this model
is intractable, and the normalization factor Z cannot be computed in closed form, training the model
becomes a hard problem and the likelihood is maximized only approximately (e.g using contrastive di-
vergence).

A different kind of generative models for images are models based on deep neural networks that can
be used to generate random images. Recently, impressive results have been demonstrated for training
such networks [12, 19]. Although these models can be used to generate random images with typical
characteristics of natural images, it is not clear how to use them to compute the probability of a given
image, and therefore, they are not used as prior models for inference tasks.

1.2.2 Patch priors

In contrast to the FoE which is a model for whole images, the Expected Patch Log Likelihood (EPLL)
method by Zoran and Weiss [48] shows how image restoration can be performed using models of small
patches only. They show that given a good model of local image patches one can use a naive approxi-
mation that assumes independence between all patches, and perform global MAP inference that achieves
very good results:

argmax
x

∑

i

logPr(xi) + λ logPr(y|x) (1.8)

where the sum in the log prior is over all patches and comes from the independence assumption.
The idea behind EPLL is that learning a good model for small patches and doing the approximation

at inference time is better than compromising for an approximate model for whole images (due to the
difficulty of learning good models for such high dimensional data).

Popular models for image patches include models based on Gaussian scale mixtures [35, 43], ICA
and sparse coding [34, 2, 13, 32] and others [24, 44]. The patch model that Zoran and Weiss use is an
unconstrained Gaussian mixture model (GMM) with 200 components on 8 × 8 patches. This model is
very expressive and has almost half a million parameters, much more than other patch models and also
more than the FoE model for whole images which has less than a thousand parameters.

Figure 1.4 shows that better patch models in terms of log-likelihood result in better image restoration
when used in the EPLL method. The GMM model which has the best log-likelihood also results in the best
image restoration. Image denoising with the EPLL method and the trained GMM also outperforms image
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Figure 1.5: The discriminative learning approach. Given a set of input images and corresponding output
images, search for the best predictor within a predefined architecture.

models such as the FoE and the very popular handcrafted method BM3D. In addition, it significantly
outperforms the handcrafted methods for image deblurring.

1.3 The discriminative learning approach

In contrast to generative learning, the discriminative approach aims to directly model a predictor for the
inference problem, avoiding the need to apply Bayes’ rule at test time. Looking at the model in figure
1.4, this means directly learning the red arrow.

For low level vision this would consist of gathering a dataset of input/output image pairs, coming
up with some hypothesis class of possible predictors and searching for the best predictor from the input
to the output within the class (figure 1.5). Specifically for image denoising, a dataset of clean images
can serve as the desired output, and one can create the corresponding input examples by applying noise
to each image. Then, after coming up with a suitable class of predictors one needs to define a search
method to find the best predictor. A possible choice for the predictor is a feed-forward neural network
with several layers, trained using stochastic gradient descent.

Although this approach was tested in the past [23], perhaps the first example of a discriminative
approach to image denoising that surpassed the results of the handcrafted BM3D was the MLP model [7]
which uses a multi-layer perceptron (i.e. a fully connected feed-forward neural network) for small image
patches. The model is used to denoise full images by running on all patches and averaging the results.

One of the reasons that allowed the MLP model to outperform BM3D is that in contrast to previous
attempts, it was trained on a very large dataset of natural images (millions of images from the ImageNet
dataset [11]). However, in order to outperform BM3D for various noise levels, the MLP model was
trained separately for different noise levels, resulting in a different model for each noise level. Figure 1.6
shows the performance of models trained on different noise levels, compared to BM3D. The performance
of models that were trained on a certain noise level drops quickly when the noise level is changed at test
time.

1.3.1 Partial discriminative methods

Although using end-to-end discriminative learning in other low-level vision tasks is still rare, many suc-
cessful methods combine discriminative training in different aspects of the predictor. One example is the
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Figure 1.6: Quality of Image denoising compared to BM3D. Discriminative models that were trained on
certain noise levels used for other noise levels. (replotted from [7]).

FlowNet model [15], which is a neural network that predicts the optical flow field given a pair of images.
Although the FlowNet results are impressive, it is shown in the paper that the output of the discriminative
model is still worse than the output of handcrafted methods and is only good as a starting point to other
optical flow methods.

Another way to use discriminative training in low level vision is to train a predictor of the data term
in the energy function. Examples such as [46, 17] train neural networks to predict the quality of match
between two image patches in an optical flow or stereo setting. For inference, they use different search
methods to find a solution that gives the best results under the trained predictor.

1.3.2 Generative vs. discriminative

A natural question to ask at this point is which approach is better for low level vision, generative or
discriminative? If we compare the EPLL and MLP methods presented above, we see that both approaches
can achieve good results but they both have different advantages and disadvantages.

The discriminative approach can lead to better performance with a controlled running time in in-
ference, since it optimizes in advance the best choice within a given predictor architecture for a given
task. This is not the case for the generative approach which at inference time needs to apply Bayes’ rule,
usually involving a hard optimization problem.

However, the advantage of the generative approach is in the separate modeling of the prior and the
likelihood term which leads to a modular predictor. For example in non-blind image restoration, one can
learn a single model for images and use it for different tasks such as denoising with different noise levels,
deblurring with different blur kernel and inpainting. Training the prior model is done only once on clean
images, and then for each task it is paired to the corresponding likelihood and used in Bayes’ rule. The
discriminative approach in this setting would require to re-train a model for each task, such as different
noise levels (figure 1.6), and probably would require to train different architectures for other tasks like
deblurring. The strengths of the modularity property in the generative approach, is that it can even be
used for new tasks that were not conceived yet in the time of training.

The modularity property of generative learning can also be significant at training time, reducing the
sample complexity for a specific task and loss. When the target variable x is of high dimension and has
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Figure 1.7: Comparing discriminative and generative training of linear predictors for non-Gaussian data.
For small training sets, the generative modeling which decouples the prior from the noise, serves as a
regularization and results in better generalization.

some interesting structure, and the observed variable y is really generated by some process based on x
(i.e. when the data really comes from the graphical model in figure 1.4), this prior knowledge can be
helpful at training time.

Figure 1.7 illustrates this effect, using synthetic data of ten dimensional vectors x and ten dimen-
sional observations y. For different sizes of the training set, the data is used to (1) train a discriminative
linear regressor, and (2) fit a Gaussian model to x (prior), a Gaussian model to y − x (noise), and use
them to compute the BLS linear predictor Cx(Cx + Cy−x)−1. Both the target vectors x and the noise
added to generate y are not Gaussian and thus neither of the predictors is optimal. When evaluating both
linear predictors on a hold-out test set, we see that indeed for small training sets up to a certain size,
the generative approach achieves better results. When the dataset is too small to train a predictor end-
to-end, de-coupling the prior of x from the noise that generated the observation y can serve as a good
regularization.

1.4 A generalized approach to generative learning

Taking the generative approach and using MAP inference boils down to the following optimization prob-
lem:

argmax
x

logPr(y|x) + logPr(x) (1.9)

Examining this equation we see that the generative approach has three components:

1. The prior: Pr(x).

2. The likelihood/noise: Pr(y|x).

3. The inference: argmaxx.

Here we focus on simple maximization (MAP inference), but in general the inference could be any
other process applied to the prior and likelihood, such as finding the mean of the posterior (BLS
inference).

Taking a more general approach for generative learning, we can use ground-truth data to not only learn a
prior or noise model, but also to learn how to use these models at inference time. Viewed this way, when
tackling different low level vision tasks we have the choice to either fix in advance or learn from data
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each one of the above components. In our work we aim to extend the success of the generative approach
as achieved by the EPLL method for image restoration [48] in 2 different aspects:

• We apply the approach to other low level vision problems such as optical flow and depth estimation.

• We demonstrate how to improve all the three components of the generative approach by directly
learning them from ground-truth data.

1.4.1 Learning the inference

How is learning the inference of a generative model different from the end-to-end discriminative approach
which directly learns an inference process?

The first advantage of the generative model is that it can be used as a starting point for the dis-
criminative method or at least it can define the class of possible predictors to search within. If there is
some natural way to model the problem in the generative direction (e.g. when the noise model is known
in advance), one can formulate the predictor as some inference procedure performed on the unknown
generative model. Since this defines a class of predictors with unknown parameters, it can be trained
discriminatively to minimize a certain loss. If the generative model was trained beforehand, then it can
be used as a starting point for gradient descent for example.

This approach, also known as “unrolling the inference”, has become popular lately for low level
vision. For example, Gregor and LeCun [20] discriminatively train a predictor for super-resolution
which is based on a sparse prior and different inference methods (such as coordinate descent). Another
example is the discriminative training of the Fields-of-Experts model for image deblurring [41], where
the predictor is based on half-quadratic splitting inference [18] with five iterations.

The unrolling approach results in an interpretable predictor since its architecture was designed in
advance based on a prior component and a likelihood component. Therefore it can be used in a modular
way, e.g. by changing the noise model parameters at test time. However, since it was trained on specific
inference tasks and loss it is expected to be biased towards the distribution of tasks and the loss it has
encountered at training time.

One of the basic principles in the generative approach is that training is performed independently of
a certain inference task or loss. Instead, at training time one seeks to maximize the likelihood over the
training data which can be interpreted as directly trying to match the data distribution as good as possible
using the KL-divergence. Our aim is to use this approach also when learning the inference. Although it
might be a harder problem than optimizing the inference for a specific task, the hope is that this will lead
to more modular predictors that can even work for new tasks and losses that were not known at training
time.

When using complex generative models, one of the difficulties in inference is the need to predict
the state of hidden variables. Learning a predictor for the hidden states can facilitate and accelerate
inference at test time. Although it was not applied to low level vision problems before, the idea of learning
a predictor for hidden states was already introduced in the Helmholtz machine [10]. The Helmholtz
machine is a hierarchical feed-forwrd generative model coupled with a “backwards” inference model.
Since the generative model consists of several layers of hidden variables, direct learning is intractable,
and instead the model is trained by simultaneously training the inference model to predict the hidden
states.
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We show in our work how the idea of learning to predict hidden states can be used for image restora-
tion. Specifically, we show that predicting the posterior over the components of a mixture model prior,
termed “gating”, leads to accelerated image restoration while retaining the modularity property (section
2.3).

1.5 Interim summary

In this chapter we discussed the problem of low level vision and three approaches to tackle it: the hand-
crafted approach, generative learning and discriminative learning. We described different advantages of
each approach, and showed that although discriminative learning can lead to better performance for a a
given running time and pre-defined task, the advantage of generative learning is in its modularity. Sep-
arately modeling the prior and likelihood can lead to lower sample complexity at training, and it also
allows a model to be used for different tasks at test time (e.g. when given different noise models). We
suggested to take a more general view of the generative approach where each of its three components, the
prior, the likelihood, and the inference process, can be either handcrafted or learned from data.

In the next chapter we present four papers which form the main results of our research. The pa-
pers demonstrate on different domains of low level vision, how the three components of the generative
approach can be improved by statistical learning from data. In the first and second papers we discuss
prior models and likelihood models for optical flow estimation. We show how the assumptions made by
different handcrafted methods can be extracted and formulated as probabilistic models of the prior and
likelihood, allowing them to be evaluated on ground-truth data. We compare the different handcrafted
models and show how better models can be learned directly from the ground-truth. In the third paper we
show how the inference process can be learned from data, for image restoration problems. We show that
this results in a predictor that combines the advantages of the generative and discriminative approaches
by being both modular and fast at test time. The forth paper deals with the problem of enhancing the
depth map output of RGBD cameras. We compare different prior models extracted from handcrafted
methods, and show that by evaluating and learning the models on ground-truth data we can improve the
state-of-the-art in depth enhancement.
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Chapter 2

Results

In this chapter we present the main results of our research. The upcoming sections consist of two papers
which were published and two which were submitted for review.
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2.1 Learning the local statistics of optical flow

This section includes the following publication:
Dan Rosenbaum, Daniel Zoran and Yair Weiss. Learning the local statistics of optical flow. Advances

in Neural Information Processing Systems, 2013.
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Learning the Local Statistics of Optical Flow

Dan Rosenbaum1, Daniel Zoran2, Yair Weiss1,2
1 CSE , 2 ELSC , Hebrew University of Jerusalem
{danrsm,daniez,yweiss}@cs.huji.ac.il

Abstract

Motivated by recent progress in natural image statistics, we use newly available
datasets with ground truth optical flow to learn the local statistics of optical flow
and compare the learned models to prior models assumed by computer vision
researchers. We find that a Gaussian mixture model (GMM) with 64 components
provides a significantly better model for local flow statistics when compared to
commonly used models. We investigate the source of the GMM’s success and
show it is related to an explicit representation of flow boundaries. We also learn
a model that jointly models the local intensity pattern and the local optical flow.
In accordance with the assumptions often made in computer vision, the model
learns that flow boundaries are more likely at intensity boundaries. However,
when evaluated on a large dataset, this dependency is very weak and the benefit of
conditioning flow estimation on the local intensity pattern is marginal.

1 Introduction

Sintel MPI KITTI

Figure 1: Samples of frames and flows from new flow databases. We leverage these newly available
resources to learn the statistics of optical flow and compare this to assumptions used by computer
vision researchers.

The study of natural image statistics is a longstanding research topic with both scientific and engi-
neering interest. Recent progress in this field has been achieved by approaches that systematically
compare different models of natural images with respect to numerical criteria such as log likelihood
on held-out data or coding efficiency [1, 10, 14]. Interestingly, the best models in terms of log like-
lihood, when used as priors in image restoration tasks, also yield state-of-the-art performance [14].

Many problems in computer vision require good priors. A notable example is the computation of
optical flow: a vector at every pixel that corresponds to the two dimensional projection of the motion
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at that pixel. Since local motion information is often ambiguous, nearly all optical flow estimation
algorithms work by minimizing a cost function that has two terms: a local data term and a “prior”
term (see. e.g. [13, 11] for some recent reviews).

Given the success in image restoration tasks, where learned priors give state-of-the-art performance,
one might expect a similar story in optical flow estimation. However, with the notable exception
of [9] (which served as a motivating example for this work and is discussed below) there have been
very few attempts to learn priors for optical flow by modeling local statistics. Instead, the state-of-
the-art methods still use priors that were formulated by computer vision researchers. In fact, two
of the top performing methods in modern optical flow benchmarks use a hand-defined smoothness
constraint that was suggested over 20 years ago [6, 2].

One big difference between image statistics and flow statistics is the availability of ground truth
data. Whereas for modeling image statistics one merely needs a collection of photographs (so that
the amount of data is essentially unlimited these days), for modeling flow statistics one needs to
obtain the ground truth motion of the points in the scene. In the past, the lack of availability of
ground truth data did not allow for learning an optical flow prior from examples. In the last two
years, however, two ground truth datasets have become available. The Sintel dataset (figure 1)
consists of a thousand pairs of frames from a highly realistic computer graphics film with a wide
variety of locations and motion types. Although it is synthetic, the work in [3] convincingly show
that both in terms of image statistics and in terms of flow statistics, the synthetic frames are highly
similar to real scenes. The KITTI dataset (figure 1) consists of frames taken from a vehicle driving
in a European city [5]. The vehicle was equipped with accurate range finders as well as accurate
localization of its own motion, and the combination of these two sources allow computing optical
flow for points that are stationary in the world. Although this is real data, it is sparse (only about
50% of the pixels have ground truth flow).

In this paper we leverage the availability of ground truth datasets to learn explicit statistical models
of optical flow. We compare our learned model to the assumptions made by computer vision algo-
rithms for estimating flow. We find that a Gaussian mixture model with 64 components provides a
significantly better model for local flow statistics when compared to commonly used models. We
investigate the source of the GMM’s success and show that it is related to an explicit representation
of flow boundaries. We also learn a model that jointly models the local intensity pattern and the
local optical flow. In accordance with the assumptions often made in computer vision, the model
learns that flow boundaries are more likely at intensity boundaries. However, when evaluated on a
large dataset, this dependency is very weak and the benefit of conditioning flow estimation on the
local intensity pattern is marginal.

1.1 Priors for optical flow

One of the earliest methods for optical flow that is still used in applications is the celebrated Lucas-
Kanade algorithm [7]. It overcomes the local ambiguity of motion analysis by assuming that the
optical flow is constant within a small image patch and finds this constant motion by least-squares
estimation. Another early algorithm that is still widely used is the method of Horn and Schunck [6].
It finds the optical flow by minimizing a cost function that has a data term and a “smoothness” term.
Denoting by u the horizontal flow and v the vertical flow, the smoothness term is of the form:

JHS =
∑

x,y

u2x + u2y + v2x + v2y

where ux, uy are the spatial derivatives of the horizontal flow u and vx, vy are the spatial derivatives
of the vertical flow v. When combined with modern optimization methods, this algorithm is often
among the top performing methods on modern benchmarks [11, 5].

Rather than using a quadratic smoothness term, many authors have advocated using more robust
terms that would be less sensitive to outliers in smoothness. Thus the Black and Anandan [2] algo-
rithm uses:

JBA =
∑

x,y

ρ(ux) + ρ(uy) + ρ(vx) + ρ(vy)

where ρ(t) is a function that grows slower than a quadratic. Popular choices for ρ include the
Lorentzian, the truncated quadratic and the absolute value ρ(x) = |x| (or a differentiable approxi-
mation to it ρ(x) =

√
ε+ x2)[11]. Both the Lorentzian and the absolute value robust smoothness
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terms were shown to outperform quadratic smoothness in [11] and the absolute value was better
among the two robust terms.

Several authors have also suggested that the smoothness term be based on the local intensity pattern,
since motion discontinuities are more likely to occur at intensity boundaries. Ren [8] modified
the weights in the Lucas and Kanade least-squares estimation so that pixels that are on different
sides of an intensity boundary will get lower weights. In the context of Horn and Shunck, several
authors suggest using weights to the horizontal and vertical flow derivatives, where the weights had
an inverse relationship with the image derivatives: large image derivatives lead to low weight in the
flow smoothness (see [13] and references within for different variations on this idea). Perhaps the
simplest such regularizer is of the form:

JHSI =
∑

x,y

w(Ix)(u
2
x + v2x) + w(Iy)(u

2
y + v2y) (1)

As we discuss below, this prior can be seen as a Gaussian prior on the flow that is conditioned on
the intensity.

In contrast to all the previously discussed priors, Roth and Black [9] suggested learning a prior from
a dataset. They used a training set of optical flow obtained by simulating the motion of a camera in
natural range images. The prior learned by their system was similar to a robust smoothness prior,
but the filters are not local derivatives but rather more random-looking high pass filters. They did not
observe a significant improvement in performance when using these filters, and standard derivative
filters are still used in most smoothness based methods.

Given the large number of suggested priors, a natural question to ask is: what is the best prior to use?
One way to answer this question is to use these priors as a basis for an optical flow estimation algo-
rithm and see which algorithm gives the best performance. Although such an approach is certainly
informative it is difficult to get a definitive answer using it. For example, Sun et al. [11] reported that
adding a non-local smoothness term to a robust smoothness prior significantly improved results on
the Middlebury benchmark, while Geiger et al. [5] reported that this term decreased performance on
KITTI benchmark. Perhaps the main difficulty with this approach is that the prior is only one part of
an optical flow estimation algorithm. It is always combined with a non-convex likelihood term and
optimized using a nonlinear optimization algorithm. Often the parameters of the optimization have
a very large influence on the performance of the algorithm.

In this paper we take an alternative approach. Motivated by recent advances in natural image statis-
tics and the availability of new datasets, we compare different priors in terms of (1) log likelihood
on held-out data and (2) inference performance with tractable posteriors. Our results allow us to
rigorously compare different prior assumptions.

2 Comparing priors as density models

In order to compare different prior models as density models, we generate a training set and test
set of optical flow patches from the ground truth databases. Denoting by f a single vector that
concatenates all the optical flow in a patch (e.g. if we consider 8× 8 patches, f is a vector of length
128 where the first 64 components denote u and the last 64 components denote v). Given a prior
probability model Pr(f ; θ) we use the training set to estimate the free parameters of the model θ and
then we measure the log likelihood of held out patches from the test set.

From Sintel, we divided the pairs of frames for which ground truth is available into 708 pairs which
we used for training and 333 pairs which we used for testing. The data is divided into scenes and we
made sure that different scenes are used in training and testing. We created a second test set from
the KITTI dataset by choosing a subset of patches for which full ground truth flow was available.
Since we only consider full patches, this set is smaller and hence we use it only for testing, not for
training.

The priors we compared are:

• Lucas and Kanade. This algorithm is equivalent to the assumption that the observed flow is
generated by a constant (u0, v0) that is corrupted by IID Gaussian noise. If we also assume
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that u0, v0 have a zero mean Gaussian distribution, Pr(f) is a zero mean multidimensional
Gaussian with covariance given by σ2

pOO
t + σ2

nI where O is a binary 128× 2 matrix and
σp the standard deviation of u0, v0 and σn the standard deviation of the noise.

• Horn and Schunck. By exponentiating JHS we see that Pr(f ; θ) is a multidimensional
Gaussian with covariance matrix λDDT where D is a 256 × 128 derivative matrix that
computes the derivatives of the flow field at each pixel and λ is the weight given to the
prior relative to the data term. This covariance matrix is not positive definite, so we use
λDDT + εI and determine λ, ε using maximum likelihood.

• L1. We exponentiate JBA and obtain a multidimensional Laplace distribution. As in Horn
and Schunck, this distribution is not normalizeable so we multiply it by an IID Laplacian
prior on each component with variance 1/ε. This again gives two free parameters (λ, ε)
which we find using maximum likelihood. Unlike the Gaussian case, the solution of the
ML parameters and the normalization constant cannot be done in closed form, and we use
Hamiltonian Annealed Importance Sampling [10].

• Gaussian Mixture Models (GMM). Motivated by the success of GMMs in modeling natural
image statistics [14] we use the training set to estimate GMM priors for optical flow. Each
mixture component is a multidimensional Gaussian with full covariance matrix and zero
mean and we vary the number of components between 1 and 64. We train the GMM using
the standard Expectation-Maximization (EM) algorithm using mini-batches. Even with a
few mixture components, the GMM has far more free parameters than the previous models
but note that we are measuring success on held out patches so that models that overfit
should be penalized.

The summary of our results are shown in figure 2 where we show the mean log likelihood on the
Sintel test set. One interesting thing that can be seen is that the local statistics validate some as-
sumptions commonly used by computer vision researchers. For example, the Horn and Shunck
smoothness prior is as good as the optimal Gaussian prior (GMM1) even though it uses local first
derivatives. Also, the robust prior (L1) is much better than Horn and Schunck. However, as the num-
ber of Gaussians increase the GMM is significantly better than a robust prior on local derivatives.

A closer inspection of our results is shown in figure 3. Each figure shows the histogram of log like-
lihood of held out patches: the more shifted the histogram is to the right, the better the performance.
It can be seen that the GMM is indeed much better than the other priors including cases where the
test set is taken from KITTI (rather than Sintel) and when the patch size is 12×12 rather than 8×8.

LK HS L1 GMM1 GMM2 GMM4 GMM8 GMM16 GMM64
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Figure 2: mean log likelihood of the different models for 8× 8 patches extracted from held out data
from Sintel. The GMM outperforms the models that are assumed by computer vision researchers.

2.1 Comparing models using tractable inference

A second way of comparing the models is by their ability to restore corrupted patches of optical
flow. We are not claiming that optical flow restoration is a real-world application (although using
priors to “fill in” holes in optical flow is quite common, e.g. [12, 8]). Rather, we use it because
for the models we are discussing the inference can either be done in closed form or using convex
optimization, so we would expect that better priors will lead to better performance.

We perform two flow restoration tasks. In “flow denoising” we take the ground truth flow and add
IID Gaussian noise to all flow vectors. In “flow inpainting” we add a small amount of noise to all
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Figure 3: Histograms of log-likelihood of different models on the KITTI and Sintel test sets with
two different patch sizes. As can be seen, the GMM outperforms other models in all four cases.

flow vectors and a very big amount of noise to some of the flow vectors (essentially meaning that
these flow vectors are not observed). For the Gaussian models and the GMM models the Bayesian
Least Squares (BLS) estimator of f given y can be computed in closed form. For the Laplacian
model, we use MAP estimation which leads to a convex optimization problem. Since MAP may be
suboptimal for this case, we optimize the parameters λ, ε for MAP inference performance.

Results are shown in figures 4,5. The standard deviation of the ground truth flow is approximately
11.6 pixels and we add noise with standard deviations 10, 20 and 30 pixel. Consistent with the
log likelihood results, L1 outperforms the Gaussian methods but is outperformed by the GMM. For
small noise values the difference between L1 and the GMM is small, but as the amount of noise
increases L1 becomes similar in performance to the Gaussian methods and is much worse than the
GMM.

3 The secret of the GMM

We now take a deeper look at how the GMM models optical flow patches. The first (and not surpris-
ing) thing we found is that the covariance matrices learned by the model are block diagonal (so that
the u and v components are independent given the assignment to a particular component).

More insight can be gained by considering the GMM as a local subspace model: a patch which
is generated by component k is generated as a linear combination of the eigenvectors of the kth
covariance. The coefficients of the linear combination have energy that decays with the eigenvalue:
so each patch can be well approximated by the leading eigenvectors of the corresponding covariance.
Unlike global subspace models, different subspace models can be used for different patches, and
during inference with the model one can infer which local subspace is most likely to have generated
the patch.

Figure 6 shows the dominant leading eigenvectors of all 32 covariance matrices in the GMM32
model: the eigenvectors of u are followed by the eigenvectors of v. The number of eigenvectors
displayed in each row is set so that they capture 99% of the variance in that component. The rows
are organized by decreasing mixing weight. The right hand half of each row shows (u,v) patches
that are sampled from that Gaussian.
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Denoising: σ = 10 σ = 20 σ = 30
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Inpainting: 2× 2 4× 4 6× 6
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Figure 4: Denoising with different noise values and inpainting with different hole sizes.

Figure 5: Visualizing denoising performance (σ = 30).

It can be seen that the first 10 components or so model very smooth components (in fact the samples
appear to be completely flat). A closer examination of the eigenvalues shows that these ten com-
ponents correspond to smooth motions of different speeds. This can also be seen by comparing the
v samples on the top row which are close to gray with those in the next two rows which are much
closer to black or white (since the models are zero mean, black and white are equally likely for any
component).

As can be seen in the figure, almost all the energy in the first components is captured by uniform
motions. Thus these components are very similar to a non-local smoothness assumption similar to
the one suggested in [11]): they not only assume that derivatives are small but they assume that all
the 8× 8 patch is constant. However, unlike the suggestion in [11] to enforce non-local smoothness
by applying a median filter at all pixels, the GMM only applies non-local smoothness at a subset of
patches that are inferred to be generated by such components.

As we go down in the figure towards more rare components. we see that the components no longer
model flat components but rather motion boundaries. This can be seen both in the samples (rightmost
rows) and also in the leading eigenvectors (shown on the left) which each control one side of a
boundary. For example, the bottom row of the figure illustrates a component that seems to generate
primarily diagonal motion boundaries.

Interestingly, such local subspace models of optical flow have also been suggested by Fleet et al. [4].
They used synthetic models of moving occlusion boundaries and bars to learn linear subspace mod-
els of the flow. The GMM seems to support their intuition that learning separate linear subspace
models for flat vs motion boundary is a good idea. However, unlike the work of Fleet et al. the
separation into “flat” vs. “motion boundary” was learned in an unsupervised fashion directly from
the data.
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leading eigenvectors patch samples

u v u v

Figure 6: The eigenvectors and samples of the GMM components. GMM is better because it explic-
itly models edges and flat patches separately.

4 A joint model for optical flow and intensity

As mentioned in the introduction, many authors have suggested modifying the smoothness assump-
tion by conditioning it on the local intensity pattern and giving a higher penalty for motion discon-
tinuities in the absence of intensity discontinuities. We therefore ask, does conditioning on the local
intensity give better log likelihood on held out flow patches? Does it give better performance in
tractable inference tasks?

We evaluated two flow models that are conditioned on the local intensity pattern. The first one is a
conditional Gaussian (eq. 1) with exponential weights, i.e. w(Ix) = exp(−I2x/σ2) and the variance
parameter σ2 is optimized to maximize performance. The second one is a Gaussian mixture model
that simultaneously models both intensity and flow.

The simultaneous GMM we use includes a 200 component GMM to model the intensity together
with a 64 dimensional GMM to model the flow. We allow a dependence between the hidden variable
of the intensity GMM and that of the flow GMM. This is equivalent to a hidden Markov model
(HMM) with 2 hidden variables: one represents the intensity component and one represents the
flow component (figure 8). We learn the HMM using the EM algorithm. Initialization is given
by independent GMMs learned for the intensity (we actually use the one learned by [14] which is
available on their website) and for the flow. The intensity GMM is not changed during the learning.
Conditioned on the intensity pattern, the flow distribution is still a GMM with 64 components (as in
the previous section) but the mixing weights depend on the intensity.

Given these two conditional models, we now ask: will the conditional models give better perfor-
mance than the unconditional ones? The answer, shown in figure 7 was surprising (to us). Condi-
tioning on the intensity gives basically zero improvement in log likelihood and a slight improvement
in flow denoising only for very large amounts of noise. Note that for all models shown in this figure,
the denoised estimate is the Bayesian Least Squares (BLS) estimate, and is optimal given the learned
models.

To investigate this effect, we examine the transition matrix between the intensity components and
the flow components (figure 8). If intensity and flow were independent, we would expect all rows
of the transition matrix to be the same. If an intensity boundary always lead to a flow boundary,
we would expect the bottom rows of the matrix to have only one nonzero element. By examining
the learned transition matrix we find that while there is a dependency structure, it is not very strong.
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Regardless of whether the intensity component corresponds to a boundary or not, the most likely
flow components are flat. When there is an intensity boundary, the flow boundary in the same
orientation becomes more likely. However, even though it is more likely than in the unconditioned
case, it is still less likely than the flat components.

To rule out that this effect is due to a local optimum found by EM, we conducted additional exper-
iments whereby the emission probabilities were held fixed to the GMMs learned independently for
flow and motion and each patch in the training set was assigned one intensity and one flow compo-
nent. We then estimated the joint distribution over flow and motion components by simply counting
the relative frequency in the training set. The results were nearly identical to those found by EM.

In summary, while our learned model supports the standard intuition that motion boundaries are
more likely at intensity boundaries, it suggests that when dealing with a large dataset with high
variability, there is very little benefit (if any) in conditioning flow models on the local intensity.

Hidden Markov model Likelihood Denoising: σ = 90

h intensity h flow

intensity flow

−20 −15 −10 −5 0

−15

−10

−5

0

log-likelihood

lo
g
(f
ra
ct
io
n
o
f
p
a
tc
h
es
)

 

 

HS

HSI

GMM

HMM

20 40 60 80 100

−10

−8

−6

−4

−2

PSNR
lo
g
(f
ra
ct
io
n
o
f
p
a
tc
h
es
)

 

 

HS

HSI

GMM

HMM

Figure 7: The hidden Markov model we use to jointly model intensity and flow. Both log likelihood
and inference evaluations show almost no improvement of conditioning flow on intensity.
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Figure 8: Left: the transition matrix learned by the HMM. Right: comparing rows of the matrix
to the unconditional mixing weights. Conditioned on an intensity boundary, motion boundaries
become more likely but are still less likely than a flat motion.

5 Discussion

Optical flow has been an active area of research for over 30 years in computer vision, with many
methods based on assumed priors over flow fields. In this paper, we have leveraged the availability
of large ground truth databases to learn priors from data and compare our learned models to the
assumptions typically made by computer vision researchers. We find that many of the assumptions
are actually supported by the statistics (e.g. the Horn and Schunck model is close to the opti-
mal Gaussian model, robust models are better, intensity discontinuities make motion discontinuities
more likely). However, a learned GMM model with 64 components significantly outperforms the
standard models used in computer vision, primarily because it explicitly distinguishes between flat
patches and boundary patches and then uses a different form of nonlocal smoothness for the different
cases.
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Abstract

Optical flow is typically estimated by minimizing a “data cost” and an optional
regularizer. While there has been much work on different regularizers many mod-
ern algorithms still use a data cost that is not very different from the ones used
over 30 years ago: a robust version of brightness constancy or gradient con-
stancy. In this paper we leverage the recent availability of ground-truth optical
flow databases in order to learn a data cost. Specifically we take a generative ap-
proach in which the data cost models the distribution of noise after warping an
image according to the flow and we measure the “goodness” of a data cost by
how well it matches the true distribution of flow warp error. Consistent with cur-
rent practice, we find that robust versions of gradient constancy are better models
than simple brightness constancy but a learned GMM that models the density of
patches of warp error gives a much better fit than any existing assumption of con-
stancy. This significant advantage of the GMM is due to an explicit modeling of
the spatial structure of warp errors, a feature which is missing from almost all
existing data costs in optical flow. Finally, we show how a good density model
of warp error patches can be used for optical flow estimation on whole images.
We replace the data cost by the expected patch log-likelihood (EPLL), and show
how this cost can be optimized iteratively using an additional step of denoising
the warp error image. The results of our experiments are promising and show that
patch models with higher likelihood lead to better optical flow estimation.

1 Introduction

Despite being a longstanding topic of study in computer vision, the current state-of-the-art optical
flow estimation results are far from being satisfactory. This is especially evident when performance
is evaluated on outdoor scenes with large occlusions and fast motions [5, 4]. In the last two years
ground truth flow for such scenes has been made available either using synthetic scenes [4] or by
accurate laser range finders that provide flow for stationary points in the scene [5].

Like many problems in computer vision, optical flow estimation is commonly solved by optimizing
a function derived from a certain assumed model. The assumed model can be typically divided to a
data cost model which reflects the assumptions on the way the flow should correspond to the images,
and a regularizer that reflects the prior assumptions on typical flow fields. Since the functions opti-
mized are usually not convex, most algorithms only achieve approximate solutions and so another
critical component in the algorithm is the optimization procedure.

In order to improve performance of flow estimation one can choose to improve any of these three
components: the regularizer, the data cost and the optimizer. While much recent work has explored
using different regularizers (e.g. [19, 13]) or different optimizers (e.g. [16, 11, 17]) there has been
relatively little work on the data term. A notable exception is the recent work of Vogel and Roth [14]
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first image I1 ground-truth flow v

second image I2 flow warp error Dv

patches of Dv

Figure 1: Flow warp error. The second image is warped backwards according to the ground-truth
flow and subtracted from the first image. The resulting warp error image is then divided to small
patches. In this paper we use a database of such patches in order to learn a data term for optical flow.
In contrast to models used in common algorithms, the warp error has an evident spatial structure and
is far from being isotropic noise.

which compares the effect of different versions of brightness or gradient constancy on the perfor-
mance of optical flow algorithms.

Brightness constancy and gradient constancy are in a sense “hand-crafted” data costs. Is it possible
to leverage the availability of ground truth flow datasets in order to learn a data cost for optical flow?
A step in this direction was taken by Sun et al [12] who used a Fields of Experts distribution over
the error term and learned 3 × 3 filters that defined the data cost. The learned cost was similar to
gradient constancy but with irregular filters.

In this paper we take a generative approach in which the data cost models the distribution of noise
after warping an image according to the flow. Under the ideal brightness constancy assumption,
when we backwards-warp the second image according to the optical flow we should obtain an image
that is identical to the first one (figure 1). In real images, of course, we never get exact matches and
we call the difference between the warped second image and the first image the “flow warp error.”
Different data costs for optical flow give different penalties for this flow warp error.

Here we measure the “goodness” of a data cost by how well it matches the true distribution of flow
warp error. By focusing on patches of flow warp errors we can measure this “goodness” robustly
and efficiently. Consistent with current practice, we find that robust versions of gradient constancy
are better models than simple brightness constancy but a learned Gaussian Mixture Model (GMM)
density model of the error gives a much better fit than any existing assumption of constancy. This
significant advantage of the GMM is due to an explicit modeling of the spatial structure of warp
errors, a feature which to the best of our knowledge is missing from the vast majority of existing
data costs in optical flow.

A second question we address here, is how a patch model of flow warp error can be used for flow
estimation of whole images. To do so, we replace the image data cost by the expected patch log-
likelihood (EPLL) term introduced by [20]. We also propose a method for optimizing this cost,
which is based on half-quadratic splitting [15, 7]. Our method boils down to an iterative algorithm
consisting of two steps. In the first step we solve a flow estimation problem with a simple brightness
constancy cost, and in the second step we “denoise” the resulting image of flow warp error using a
patch density model. The results of our experiments are promising and show that patch models with
higher likelihood lead to better optical flow estimation.

1.1 Optical flow data costs

Brightness Constancy

Perhaps the most common data cost simply penalizes the gray-scale distance between every pixel
in the first image I1 and its corresponding location in the second image I2 according to the flow
v. This is equivalent to creating a warped image Iv2 by warping back I2 according to v and then
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subtracting the warped image from I1. In classic optical flow algorithms like Horn and Schunck [6]
and Lucas-Kanade [8] the squared distance is summed over all pixels (SSD) resulting in:

JBCL2 =
∑

p

(I1(p)− Iv2 (p))2 . (1)

In later extensions like Black and Anandan [2], more robust functions are used, e.g. the sum of
absolute distances (SAD),

JBCL1 =
∑

p

|I1(p)− Iv2 (p)| . (2)

Gradient Constancy

A second approach is to measure the distance of the image spatial derivatives rather than gray-scale
values [3], thus allowing a constant change in gray-scale. Denoting by I1x,I1y and I2x,I2y the
horizontal and vertical derivatives of the first and second image, this is equivalent to warping I2x
and I2y according to v and subtracting them from I1x and I1y ,

JGCL2 =
∑

p

(I1x(p)− Iv2x(p))2 +
∑

p

(I1y(p)− Iv2y(p))2 . (3)

Once again, the quadratic function can be replaced by a more robust function like the absolute value,

JGCL1 =
∑

p

|I1x(p)− Iv2x(p)|+
∑

p

|I1y(p)− Iv2y(p)| . (4)

Census

An increasingly popular approach to deal with smooth changes of gray-scale between images is
to replace the gray-scale by some monotone ranking in a certain neighborhood. In the Census
transform [18], the data cost at a pixel p counts the number of neighboring pixels q that change their
sign relative to p,

JCEN =
∑

p

∑

q

1[sign(I1(q)−I1(p)) 6=sign(Iv2 (q)−Iv2 (p))]
, (5)

A convex approximation of the Census transform can be formulated by replacing the indicator and
sign functions by the absolute value, resulting in the centralized sum of absolute distance (CSAD)
data cost [14]

JCSAD =
∑

p

∑

q

|(I1(q)− I1(p))− (Iv2 (q)− Iv2 (p))| . (6)

One drawback of all the above costs is that they are all sums of local costs and lack the modeling of
spatial structure. Figure 1 shows the warp error Dv = I1− Iv2 of images from the Sintel dataset [4],
using the provided ground-truth flow. The warp error images show an evident spatial structure.
Even when looking at small random patches from the dataset, the structure is clearly observed.
In particular patches tend to be flat and close to zero but occasionally contain an edge in some
orientation.

2 The data cost as a noise model

Using a generative approach to flow estimation from a pair of images I1 and I2, it can be assumed
that the first image I1 is generated as

I1 = Iv2 + w (7)

where w is a random noise image generated from some density model. In this view, different data
costs that are functions of the warp error Dv = I1 − Iv2 , are equivalent to different density models
of w:

Pr(I1|I2; v) = Pr(Dv) =
1

Z
e−λJ(Dv) (8)
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Notice that according to equation 7, the warp error Dv is equal to the noise w and thus equation 8 is
also a density model over the additive noise w.

The data costs we consider above: brightness constancy (BC), gradient constancy (GC) and cen-
tralized sum of absolute differences (CSAD) are all functions of the warp error. In particular, they
can all be expressed as the l2-norm or l1-norm of a linear transformation of Dv . Therefore we can
formulate them as density models as follows:

Brightness Constancy L2 Exponentiating JBCL2 (equation 1), we obtain a multidimensional Gaus-
sian which is a product of independent Gaussians with variance 1/2λ.

Pr(Dv) =
1

Z
e−λ

∑
pDv(p)

2

=
1

Z
e−λ||dv||

2
2 (9)

where dv is a vector created by concatenating all pixels in Dv .

Brightness Constancy L1 Exponentiating JBCL1 (equation 2), we obtain a multidimensional
Laplace distribution which is a product of independent Laplacians with variance 1/2λ.

Pr(Dv) =
1

Z
e−λ

∑
p |Dv(p)| =

1

Z
e−λ||dv||1 (10)

Gradient Constancy L2 Exponentiating JGCL2 (equation 3), we obtain a multidimensional Gaus-
sian with inverse covariance matrix λA>A where A is a derivative matrix that computes the hori-
zontal and vertical derivatives at each pixel. Since this matrix is not invertible we add εI .

Pr(Dv) =
1

Z
e−λ

∑
pDvx(p)

2+Dvy(p)
2 ≈ 1

Z
e−d

>
v (λA>A+εI)dv (11)

Gradient Constancy L1 Exponentiating JGCL1 (equation 4), we obtain a multidimensional Laplace
distribution. As in GCL2, we add εI to make this distibution normalizable, and since the normaliza-
tion constant Z cannot be found in closed form we use Hamiltonian Annealed Importance Sampling
to approximate it [10].

Pr(Dv) =
1

Z
e−λ

∑
p |Dvx(p)|+|Dvy(p)| ≈ 1

Z
e−||(λA+εI)dv||1 (12)

Centralized Sum of Absolute Differences Exponentiating JCSAD using a 5 × 5 neighborhood
around each pixel p (equation 4), we obtain a multidimensional Laplace distribution. Now the
derivative matrixA contains more rows corresponding to all the differences between p and each pixel
q in the 5 × 5 neighborhood. Like in GCL1 we need to add εI and approximate the normalization
constant using Hamiltonian Annealed Importance Sampling.

Pr(Dv) =
1

Z
e−λ

∑
p

∑
q |Dv(q)−Dv(p)| ≈ 1

Z
e−||(λA5×5+εI)dv||1 (13)

2.1 Comparing different data costs

Perhaps the most direct way of comparing different data costs is by evaluating the relative perfor-
mance of optical flow algorithms that use these costs. This is the approach taken in [14, 12]. The
main drawback of this approach is that the flow predicted by an algorithm is usually the result of a
complicated, nonconvex optimization and many parameters can influence the final result. For exam-
ple, Sun et al [11] reported that changing the number of levels in the pyramid used for coarse to fine
optimization can dramatically change the performance of some algorithms on the Sintel benchmark.

Here we take an alternative approach. We consider the data costs as density models on Dv , and
ask: which of these density models best fits the distribution of actual patches of flow warp errors?
The primary method we use to estimate the goodness of fit is the average log likelihood on held out
data. It is well known that this log likelihood can be equivalently written as a constant minus the
KL divergence between the empirical distribution and the density model. Thus the model that gives
highest log likelihood to held out data is also the model whose distribution is most similar to the
empirical distribution.

We create a dataset of flow warp error Dv using the Sintel dataset. First we use the ground-truth
flow to warp the images backwards, then we subtract the warped images from their corresponding
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Figure 2: Log-likelihood on held-out data from Sintel’s final pass. The learned GMM noise models
(green) are compared to the common data cost noise models (blue). Consistent with common prac-
tice, gradient constancy better fits the data than brightness constancy and robust (L1) costs are better
than Gaussian (L2). However, a GMM with 100 components outperforms all other models.

GT
BCL2 BCL1 GCL2 GCL1 CSAD

GMM1 GMM2 GMM5 GMM20 GMM100

Figure 3: Patch samples of warp error from Sintel’s final pass (GT) and randomly generated using
the different noise models. Top: samples generated using the common data cost models. Bottom:
samples generated using the learned GMM models. The patches generated from GMM100 demon-
strate a very similar structure to the ground-truth patches.

preceding images, and finally we divide the resulting images to 8 × 8 patches. Following [9] we
divide the training set of Sintel into two parts: 708 image pairs in training and 333 pairs were used
for testing. All model parameters (e.g. λ, ε discussed above) were learned on the training set using
maximum likelihood. We then compare the likelihood of different density models on a random
sample of patches from the test set. We repeat this process for each of the three passes of Sintel:
albedo, clean and final, resulting in three separate training sets and test sets. Since all our results are
very similar on all the three passes we focus here only on the final pass.

The resulting likelihood for the above models are shown in figure 2 (in blue). The main things to
note are that the l1-norm is better than the l2-norm, that the constant gradient assumption is better
than the constant brightness assumption, and that the convex approximation of the census transform
is very similar to the gradient constancy assumption. These findings agree with the comparison of
optical flow estimation using different data costs reported by [14].

Another way to measure how well models capture the true statistics is by generating samples.
Patches created from a certain model, typically satisfy the underlying assumptions of the model.
Therefore, a visual resemblance to the ground-truth suggests that the patches were generated from
a better model. We can see in figure 3 (top row), that the patches generated from GCL1 and CSAD
are the most similar to the ground-truth patches. Although those patches seem to model the flatness
correctly, evidently, they fail to model the occasional structure that is present in the ground-truth.

3 Learning the noise model

Following the recent success of learning Gaussian mixture models (GMM) in natural image statis-
tics [21] and as prior models for optical flow [9], we use the training set to estimate GMMs with
a different number of components. Every component of the GMM is a multivariate Gaussian with
zero mean and a full covariance matrix. We train the GMM using the Expectation Maximization
(EM) algorithm on mini-batches from the training set. It is important to note that the GMM has
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leading eigenvectors randomly generated samples

GMM1 π = 1

GMM2
π = 0.72

π = 0.28

GMM100
π = 0.41

π = 0.04

π ≈ 10−4

Figure 4: The leading eigenvectors and randomly generated samples for the components of GMM1
and GMM2, and for some selected components of GMM100. GMM2 captures outliers by modeling
flat patches and noisy patches separately. GMM100 explicitly distinguishes between flat patches
with different variance, and patches with different types of edges.

far more parameters than the common data cost models and thus we emphasize that the models are
tested on the held-out test set to assure no overfitting occurs.

The resulting likelihood of all models is shown in figure 2. The results show that: 1. a single
Gaussian model (GMM1) has a very similar likelihood to the L2 Gradient Constancy model (GCL2);
2. a GMM with 2 components (GMM2) is similar to the robust L1 Gradient Constancy model
(GCL1); and 3. a GMM model with 100 components (GMM100) outperforms all other models.

We also use the learned GMMs to generate random patches and compare them to the ground-truth
patches and to random patches generated by the common data cost models. Figure 3 shows that the
patches generated by GMM100 resemble the ground-truth patches more than other models do.

3.1 What does the GMM learn?

We investigate the learned GMM models to understand what makes them better than the common
data cost models, In figure 4 we show the components of GMM1 (which contains only one compo-
nent), GMM2 and some selected components of GMM100. Each component is shown in a different
row. Each of those components is a Gaussian, and to illustrate its preference, we show the leading
eigenvectors of the covariance matrix corresponding to 95% of the cumulative eigenvalues (i.e. cor-
responding to 95% of the variance) re-organized as patches. In addition, we show in each row a set
of patches that were randomly generated using the corresponding Gaussian.

For the single Gaussian model (GMM1) which essentially estimates the covariance of the patches,
we can see that the leading eigenvectors of the covariance correspond to smooth changes in patches.
This is also seen in the randomly generated patches. This behavior is similar to what the gradient
constancy with l2 norm (GCL2) models.

For GMM2, the figure shows that the first component favors flat patches in a much stronger manner
than GMM1. This can be seen both in the generated samples and by the fact that 95% of the variance
is expressed by the single flat eigenvector. In contrast, the second component of GMM2 allows the
patches to be much more noisy than GMM1, and needs more eigenvectors to reach 95% of the
variance. Similarly to the robustness characteristic of GCL1, the behavior of GMM2, can be viewed
as a form of outlier detection where 72% of the errors are essentially just an additive constant and
28% of them are allowed to be very noisy.

For GMM100, we show only a few selected components ordered by decreasing mixing weights.
The first components, capture the flatness assumption, and each component allows a random con-
stant change with a different variance. Looking at components with lower mixing weights we see
components that capture more interesting structure. Most components are dedicated to edges in cer-
tain orientations and shifts. Intuitively this model learns that most of the time the warped patch and
the true patch will differ by an additive constant, but when this is not the case, the difference is not
simply white noise. Rather this “noise” is extremely structured and is well approximated locally
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by an oriented edge. In retrospect, this assumption is very intuitive and is related to the process of
occlusion. Differences between the original patches and warped patches that are not simple additive
constants are most commonly the result of occlusion and disocclusion. Since the occluded objects
have spatial structure, so does the warp error. While this assumption is very intuitive, we are not
aware of any optical flow data cost that utilizes it.

4 Optical Flow Estimation

We now show how a density model of warp error patches can be used for optical flow estimation.
A common way to estimate optical flow from a pair of images is by minimizing an energy function
containing a data cost depending on the input images and a regularizer on the flow field R(f).
Using our generative assumption (equations 7,8), the data cost we wish to minimize is equal to the
log density model of the warp error of the whole image Pr(Dv).

Given a patch density model, one way to define the image density model, introduced in [20], is to
measure the expected patch log-likelihood (EPLL) in the image. Recall that dv is a vector represen-
tation of the warp error image, and denote by Pi a matrix that extracts the i’th patch from it. The
EPLL cost can be written as:

J(v) = −
∑

i

logPr(Pi dv) + λR(v) (14)

The exact minimization of the cost defined in equation 14 is not tractable. The first reason is that
the warp error dv is a non-convex function of the flow v. The common way to overcome this is by
iteratively approximating dv as a linear function of the flow (by taking the Taylor expansion of the
image intensities around the current warp). A second problem is that even after the linearization of
dv the density model might cause the minimization to be intractable. To solve this for any density
model we use the method of half-quadratic splitting as presented in [15, 7], combined with the
EPLL image denoising method of [20]. In half-quadratic splitting, we introduce a new variable r,
resulting in the following new cost:

J(v, r) = −
∑

i

logPr(Pi r) + β||dv − r||22 + λR(v) (15)

This cost is approximately minimized by alternatingly solving for v and for r and by gradually
increasing β. Note that once β is big enough, r is forced to be close to dv and we return to the
original EPLL cost (equation 14). We next describe the 2 steps performed in each iteration:

r-step: When v is fixed, the third term in equation 15 is constant and solving for r is equivalent to
the problem of image denoising using a prior on clean patches. The “noisy” image in this case is the
warp error image dv , and the cost function on the difference dv − r is equivalent to the assumption
that the noise model is Gaussian, isotropic and with variance 1/β. Solving for r can be done using
the EPLL denoising algorithm introduced in [20], where any patch model can be used (assuming
that a patch denoising method is provided).

v-step: When r is fixed, solving for v is equivalent to estimating the optical flow using a simple
brightness constancy data cost on the image, where the first image is “fixed” according to r. To
see this recall that dv = I1 − Iv2 and so defining a new image Ir1 = I1 − r results in the cost:
argminv ||Ir1 − Iv2 ||22 + λ

βR(v).

4.1 Experiments

To test the method proposed above, we use it to estimate the optical flow in the Sintel dataset using
different warp error patch models. The estimation is performed in a coarse-to-fine manner such that
in every level we run 20 iterations, each consisting of one r-step and one v-step. During the 20
iterations we gradually increase β to assure the original cost (equation 14) is decreasing. We use
a common regularizer that penalizes the spatial derivatives of the flow using the l1 norm [14, 11],
and optimize it in each v-step using the iteratively reweighted least squares (IRLS) method. In
each v-step we perform one image warp and linearization. The r-step is performed using the EPLL
denoising software published in [20]. We start the process using an initial flow estimate in the
coarsest level that was computed using a standard gradient constancy algorithm.
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Figure 5: Average end-point-error of the optical flow estimated on 20 Sintel images. Blue: Our
proposed EPLL method using different warp error patch models. Models with higher likelihood
generally lead to lower error. Green: Reference algorithms. Even with a fairly simple flow regular-
izer, our EPLL method, combined with a good warp error patch model, is able to reach an error that
is comparable to some of the top performing algorithms.

For reference, we also compare the EPLL method to other algorithms, which we run on the same
20 Sintel images. We use the software provided by [11] to run their implementation of Horn and
Schunck (HS) and Classic+NLP which is one of the top performing algorithms in the Sintel and
KITTI datasets. We also use the software by [14] which implements the Census transform data cost
and is also one of the top performing algorithms in Sintel and KITTI. For all those algorithms we
use the default parameters as suggested in their software kits.

The results are shown in figure 5. It can be seen that the performance of the EPLL with different warp
error models is correlated to the likelihood of the models as shown in figure 2. In general, models
with higher likelihood lead to flow estimation with smaller average end-point-error. The results also
show that our EPLL method, combined with a good warp error patch model, is able to estimate the
optical flow with error that is comparable to the reference algorithms: with a good warp error model
EPLL outperforms the classic Horn and Schunck algorithm and the Vogel et al. implementation that
also uses an L1 regularizer. The Classic+NLP algorithm uses a stronger, nonlocal regularizer and
outperforms all the methods that use an L1 regualrizer in these experiments.

While we have found that all other things being equal, better warp noise models lead to better optical
flow performance, our experiments indicate that the optimization method and the regularizers can be
just as important. In particular, we find that the result of our “v-step” which uses a standard coarse-
to-fine optimization procedure is often suboptimal and gives higher cost than the ground truth flow.
This suggests that more powerful optimization methods are needed.

5 Discussion

In this paper we use a generative approach to evaluate and learn optical flow data costs. By focusing
on patches of flow warp errors we measure the likelihood of different models robustly and efficiently.
We show that evaluating the likelihood of existing data costs, largely agrees with common practice.
We find that a learned GMM gives a better fit to the true distribution and show that it is related to
the seperate representation of flat patches and different edge orientations. This intuitive structure
that mirrors the spatial structure of occluding objects in natural scenes, has not been used in existing
data costs for optical flow. Finally, we show how good patch models of warp error can lead to better
performance in flow estimation. We define a new data cost which models the expected patch log
likelihood and propose a method to optimize it. The results of our experiments show that using
models with higher likelihood leads to better estimation. Even though we use a fairly simple flow
regularizer, our EPLL method, combined with a good warp error patch model, is able to estimate
the optical flow with error that is comparable to some of the top performing algorithms. We are
confident that further research on improving the optimization, and combining our novel data cost
with a strong regularizer, can lead to improved optical flow estimation.
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Abstract

In recent years, approaches based on machine learning have achieved state-of-the-
art performance on image restoration problems. Successful approaches include
both generative models of natural images as well as discriminative training of
deep neural networks. Discriminative training of feed forward architectures al-
lows explicit control over the computational cost of performing restoration and
therefore often leads to better performance at the same cost at run time. In con-
trast, generative models have the advantage that they can be trained once and then
adapted to any image restoration task by a simple use of Bayes’ rule.
In this paper we show how to combine the strengths of both approaches by training
a discriminative, feed-forward architecture to predict the state of latent variables
in a generative model of natural images. We apply this idea to the very successful
Gaussian Mixture Model (GMM) of natural images. We show that it is possible
to achieve comparable performance as the original GMM but with two orders of
magnitude improvement in run time while maintaining the advantage of generative
models.

1 Introduction

Figure 1 shows an example of an image restoration problem. We are given a degraded image (in
this case degraded with Gaussian noise) and seek to estimate the clean image. Image restoration
is an extremely well studied problem and successful systems for specific scenarios have been built
without any explicit use of machine learning. For example, approaches based on “coring” can be
used to successfully remove noise from an image by transforming to a wavelet basis and zeroing
out coefficients that are close to zero [7]. More recently the very successful BM3D method removes
noise from patches by finding similar patches in the noisy image and combining all similar patches
in a nonlinear way [4].

In recent years, machine learning based approaches are starting to outperform the hand engineered
systems for image restoration. As in other areas of machine learning, these approaches can be
divided into generative approaches which seek to learn probabilistic models of clean images versus
discriminative approaches which seek to learn models that map noisy images to clean images while
minimizing the training loss between the predicted clean image and the true one.

Two influential generative approaches are the fields of experts (FOE) approach [16] and KSVD [5]
which assume that filter responses to natural images should be sparse and learn a set of filters un-
der this assumption. While very good performance can be obtained using these methods, when
they are trained generatively they do not give performance that is as good as BM3D. Perhaps the
most successful generative approach to image restoration is based on Gaussian Mixture Models
(GMMs) [22]. In this approach 8x8 image patches are modeled as 64 dimensional vectors and a
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Noisy image

full model gating
(200× 64 dot-products per patch)

fast gating
(100 dot-products per patch)

29.16dB 29.12dB

Figure 1: Image restoration with a Gaussian mixture model. Middle: the most probable component
of every patch calculated using a full posterior calculation vs. a fast gating network (color coded
by embedding in a 2-dimensional space). Bottom: the restored image: the gating network achieves
almost identical results but in 2 orders of magnitude faster.

simple GMM with 200 components is used to model the density in this space. Despite its simplic-
ity, this model remains among the top performing models in terms of likelihood given to left out
patches and also gives excellent performance in image restoration [23, 20]. In particular, it out-
performs BM3D on image denoising and has been successfully used for other image restoration
problems such as deblurring [19]. The performance of generative models in denoising can be much
improved by using an “empirical Bayes” approach where the parameters are estimated from the
noisy image [13, 21, 14, 5].

Discriminative approaches for image restoration typically assume a particular feed forward structure
and use training to optimize the parameters of the structure. Hel-Or and Shaked used discrimina-
tive training to optimize the parameters of coring [7]. Chen et al. [3] discriminatively learn the
parameters of a generative model to minimize its denoising error. They show that even though the
model was trained for a specific noise level, it acheives similar results as the GMM for different
noise levels. Jain and Seung trained a convolutional deep neural network to perform image denois-
ing. Using the same training set as was used by the FOE and GMM papers, they obtained better
results than FOE but not as good as BM3D or GMM [9]. Burger et al. [2] trained a deep (non-
convolutional) multi layer perceptron to perform denoising. By increasing the size of the training
set by two orders of magnitude relative to previous approaches, they obtained what is perhaps the
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best stand-alone method for image denoising. Fanello et al. [6] trained a random forest architecture
to optimize denoising performance. They obtained results similar to the GMM but at a much smaller
computational cost.

Which approach is better, discriminative or generative? First it should be said that the best per-
forming methods in both categories give excellent performance. Indeed, even the BM3D approach
(which can be outperformed by both types of methods) has been said to be close to optimal for image
denoising [12]. The primary advantage of the discriminative approach is its efficiency at run-time.
By defining a particular feed-forward architecture we are effectively constraining the computational
cost at run-time and during learning we seek the best performing parameters for a fixed computa-
tional cost. The primary advantage of the generative approach, on the other hand, is its modularity.
Learning only requires access to clean images, and after learning a density model for clean images,
Bayes’ rule can be used to peform restoration on any image degradation and can support different
loss functions at test time. In contrast, discriminative training requires separate training (and usually
separate architectures) for every possible image degradation. Given that there are literally an infi-
nite number of ways to degrade images (not just Gaussian noise with different noise levels but also
compression artifacts, blur etc.), one would like to have a method that maintains the modularity of
generative models but with the computational cost of discriminative models.

In this paper we propose such an approach. Our method is based on the observation that the most
costly part of inference with many generative models for natural images is in estimating latent vari-
ables. These latent variables can be abstract representations of local image covariance (e.g. [10])
or simply a discrete variable that indicates which Gaussian most likely generated the data in a
GMM. We therefore discriminatively train a feed-forward architecture, or a “gating network” to
predict these latent variables using far less computation. The gating network need only be trained on
“clean” images and we show how to combine it during inference with Bayes’ rule to perform image
restoration for any type of image degradation. Our results show that we can maintain the accuracy
and the modularity of generative models but with a speedup of two orders of magnitude in run time.

In the rest of the paper we focus on the Gaussian mixture model although this approach can be used
for other generative models with latent variables like the one proposed by Karklin and Lewicki [10].
Code implementing our proposed algorithms for the GMM prior and Karklin and Lewicki’s prior is
available online at www.cs.huji.ac.il/˜danrsm.

2 Image restoration with Gaussian mixture priors

Modeling image patches with Gaussian mixtures has proven to be very effective for image restora-
tion [22]. In this model, the prior probability of an image patch x is modeled by: Pr(x) =∑

h πhN (x;µh,Σh). During image restoration, this prior is combined with a likelihood func-
tion Pr(y|x) and restoration is based on the posterior probability Pr(x|y) which is computed us-
ing Bayes’ rule. Typically, MAP estimators are used [22] although for some problems the more
expensive BLS estimator has been shown to give an advantage [17].

In order to maximize the posterior probability different numerical optimizations can be used. Typi-
cally they require computing the assignment probabilities:

Pr(h|x) =
πhN (x;µh,Σh)∑
k πkN (x;µk,Σk)

(1)

These assignment probabilities play a central role in optimizing the posterior. For example, it is easy
to see that the gradient of the log of the posterior involves a weighted sum of gradients where the
assignment probabilities give the weights:

∂ log Pr(x|y)

∂x
=

∂ [log Pr(x) + log Pr(y|x)− log Pr(y)]

∂x

= −
∑

h

Pr(h|x)(x− µh)>Σ−1h +
∂ log Pr(y|x)

∂x
(2)

Similarly, one can use a version of the EM algorithm to iteratively maximize the posterior probability
by solving a sequence of reweighted least squares problems. Here the assignment probabilities
define the weights for the least squares problems [11]. Finally, in auxiliary samplers for performing

3



BLS estimation, each iteration requires sampling the hidden variables according to the current guess
of the image [17].

For reasons of computational efficiency, the assignment probabilities are often used to calculate a
hard assignment of a patch to a component:

ĥ(x) = arg max
h

Pr(h|x) (3)

Following the literature on “mixtures of experts” [8] we call this process gating. As we now show,
this process is often the most expensive part of performing image restoration with a GMM prior.

2.1 Running time of inference

The successful EPLL algorithm [22] for image restoration with patch priors defines a cost function
based on the simplifying assumption that the patches of an image are independent:

J(x) = −
∑

i

log Pr(xi)− λ log Pr(y|x) (4)

where {xi} are the image patches, x is the full image and λ is a parameter that compensates for
the simplifying assumption. Minimizing this cost when the prior is a GMM, is done by alternating
between three steps. We give here only a short representation of each step but the full algorithm is
given in the supplementary material. The three steps are:

• Gating. For each patch, the current guess xi is assigned to one of the components ĥ(xi)

• Filtering. For each patch, depending on the assignments ĥ(xi), a least squares problem is
solved.

• Mixing. Overlapping patches are averaged together with the noisy image y.

It can be shown that after each iteration of the three steps, the EPLL splitting cost function (a
relaxation of equation 4) is decreased.

In terms of computation time, the gating step is by far the most expensive one. The filtering step
multiplies each d dimensional patch by a single d×dmatrix which is equivalent to d dot-products or
d2 flops per patch. Assuming a local noise model, the mixing step involves summing up all patches
back to the image and solving a local cost on the image (equivalent to 1 dot-product or d flops per
patch).1 In the gating step however, we compute the probability of all the Gaussian components for
every patch. Each computation performs d dot-products, and so for K components we get a total of
d×K dot-products or d2 ×K flops per patch. For a GMM with 200 components like the one used
in [22], this results in a gating step which is 200 times slower than the filtering and mixing steps.

3 The gating network

Figure 2: Architecture of the gating step in GMM inference (left) vs. a more efficient gating network.

1For non-local noise models like in image deblurring there is an additional factor of the square of the kernel
dimension. If the kernel dimension is in the order of d, the mixing step performs d dot-products or d2 flops.
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The left side of figure 2 shows the computation involved in a naive computing of the gating. In the
GMM used in [22], the Gaussians are zero mean so computing the most likely component involves
multiplying each patch with all the eigenvectors of the covariance matrix and squaring the results:

logPr(x|h) = −x>Σ−1h x+ consth = −
∑

i

1

σh
i

(vhi x)2 + consth (5)

where σh
i and vhi are the eigenvalues and eigenvectors of the covariance matrix. The eigenvectors can

be viewed as templates, and therefore, the gating is performed according to weighted sums of dot-
products with different templates. Every component has a different set of templates and a different
weighting of their importance (the eigenvalues). Framing this process as a feed-forward network
starting with a patch of dimension d and using K Gaussian components, the first layer computes
d×K dot-products (followed by squaring), and the second layer performs K dot-products.

Viewed this way, it is clear that the naive computation of the gating is inefficient. There is no
“sharing” of dot-products between different components and the number of dot-products that are
required for deciding about the appropriate component, may be much smaller than is done with this
naive computation.

3.1 Discriminative training of the gating network

In order to obtain a more efficient gating network we use discriminative training. We rewrite equa-
tion 5 as:

log Pr(x|h) ≈ −
∑

i

wh
i (vTi x)2 + consth (6)

Note that the vectors vi are required to be shared and do not depend on h. Only the weights wh
i

depend on h.

Given a set of vectors vi and the weights w the posterior probability of a patch assignment is ap-
proximated by:

Pr(h|x) ≈ exp(−∑
i w

h
i (vTi x)2 + consth)∑

k exp(−∑
i w

k
i (vTi x)2 + constk)

(7)

We minimize the cross entropy between the approximate posterior probability and the exact posterior
probability given by equation 1. The training is done on 500 mini-batches of 10K clean image
patches each, taken randomly from the 200 images in the BSDS training set. We minimize the
training loss for each mini-batch using 100 iterations of minimize.m [15] before moving to the
next mini-batch.

Results of the training are shown in figure 3. Unlike the eigenvectors of the GMM covariance
matrices which are often global Fourier patterns or edge filters, the learned vectors are more localized
in space and resemble Gabor filters.

generatively trained: discriminatively trained:

log
10

 # of dot-products
1 2 3 4 5

P
S

N
R

25

25.5

26

26.5

27

generative
discriminative

Figure 3: Left: A subset of the 200× 64 eigenvectors used for the full posterior calculation. Center:
The first layer of the discriminatively trained gating network which serves as a shared pool of 100
eigenvectors. Right: The number of dot-products versus the resulting PSNR for patch denoising
using different models. Discrimintively training smaller gating networks is better than generatively
training smaller GMMs (with less components).
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Figure 1 compares the gating performed by the full network and the discriminatively trained one.
Each pixel shows the predicted component for a patch centered around that pixel. Components are
color coded so that dark pixels correspond to components with low variance and bright pixels to
high variance. The colors denote the preferred orientation of the covariance. Although the gating
network requires far less dot-products it gives similar (although not identical) gating.

Figure 4 shows sample patches arranged according to the gating with either the full model (top) or
the gating network (bottom). We classify a set of patches by their assignment probabilities. For 60
of the 200 components we display 10 patches that are classified to that component. It can be seen
that when the classification is done using the gating network or the full posterior, the results are
visually similar.

The right side of figure 3 compares between two different ways to reduce computation time. The
green curve shows gating networks with different sizes (containing 25 to 100 vectors) trained on top
of the 200 component GMM. The blue curve shows GMMs with a different number of components
(from 2 to 200). Each of the models is used to perform patch denoising (using MAP inference) with
noise level of 25. It is clearly shown that in terms of the number of dot-products versus the resulting
PSNR, discriminatively training a small gating network on top of a GMM with 200 components is
much better than a pure generative training of smaller GMMs.

gating with the full model

gating with the learned network

Figure 4: Gating with the full posterior computation vs. the learned gating network. Top: Patches
from clean images arranged according to the component with maximum probability. Every column
represents a different component (showing 60 out of 200). Bottom: Patches arranged according to
the component with maximum gating score. Both gating methods have a very similar behavior.

4 Results

We compare the image restoration performance of our proposed method to several other methods
proposed in the literature. The first class of methods used for denoising are “internal” methods that
do not require any learning but are specific to image denoising. A prime example is BM3D. The
second class of methods are generative models which are only trained on clean images. The original
EPLL algorithm is in this class. Finally, the third class of models are discriminative which are
trained “end-to-end”. These typically have the best performance but need to be trained in advance
for any image restoration problem.

In the right hand side of table 1 we show the denoising results of our implementation of EPLL with
a GMM of 200 components. It can be seen that the difference between doing the full inference and
using a learned gating network (with 100 vectors) is about 0.1dB to 0.3dB which is comparable to
the difference between different published values of performance for a single algorithm. Even with
the learned gating network the EPLL’s performance is among the top performing methods for all
noise levels. The fully discriminative MLP method is the best performing method for each noise
level but it is trained explicitly and separately for each noise level.

The right hand side of table 1 also shows the run times of our Matlab implementation of EPLL on a
standard CPU. Although the number of dot-products in the gating has been decreased by a factor of
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σ 20 25 30 50 75
internal
BM3D[22] 28.57 25.63
BM3D[1] 28.35 25.45 23.96
BM3D[6] 29.25 27.32 25.09
LSSC[22] 28.70 25.73
LSSC[6] 29.40 27.39 25.09
KSVD[22] 28.20 25.15
generative
FoE[22] 27.77 23.29
KSVDG[22] 28.28 25.18
EPLL[22] 28.71 25.72
EPLL[1] 28.47 25.50 24.16
EPLL[6] 29.38 27.44 25.22
discriminative
CSF5

7×7[18] 28.72
MLP[1] 28.75 25.83 24.42
FF[6] 29.65 27.48 25.25

EPLL with different gating methods

σ 25 50 75 sec.

full 28.52 25.53 24.02 91

gating 28.40 25.37 23.79 5.6

gating3 28.36 25.30 23.71 0.7

full: naive posterior computation.
gating: the learned gating network.
gating3: the learned network calculated

with a stride of 3.

Table 1: Average PSNR (dB) for image denoising. Left: Values for different denoising methods
as reported by different papers. Right: Comparing different gating methods for our EPLL imple-
mentation, computed over 100 test images of BSDS. Using a fast gating method results in a PSNR
difference comparable to the difference between different published values of the same algorithm.

noisy: 20.19 MLP: 27.31 full: 27.01 gating: 26.99

noisy: 20.19 MLP: 30.37 full: 30.14 gating: 30.06

Figure 5: Image denoising examples. Using the fast gating network or the full inference computa-
tion, is visually indistinguishable.

128, the effect on the actual run times is more complex. Still, by only switching to the new gating
network, we obtain a speedup factor of more than 15 on small images. We also show that further
speedup can be achieved by simply working with less overlapping patches (“stride”). The results
show that using a stride of 3 (i.e. working on every 9’th patch) leads to almost no loss in PSNR.
Although the “stride” speedup can be achieved by any patch based method, it emphasizes another
important trade-off between accuracy and running-time. In total, we see that a speedup factor of
more than 100, lead to very similar results than the full inference. We expect even more dramatic
speedups are possible with more optimized and parallel code.

Figures 5 gives a visual comparison of denoised images. As can be expected from the PSNR values,
the results with full EPLL and the gating network EPLL are visually indistinguishable.

To highlight the modularity advantage of generative models, figure 6 shows results of image deblur-
ring using the same prior. Even though all the training of the EPLL and the gating was done on clean
sharp images, the prior can be combined with a likelihood for deblurring to obtain state-of-the-art
deblurring results. Again, the full and the gating results are visually indistinguishable.
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9× 9 blur: 19.12 Hyper-Laplacian: 24.69 full: 26.25 gating: 26.15

9× 9 blur: 22.50 Hyper-Laplacian: 25.03 full: 25.77 gating: 25.75

Figure 6: Image deblurring examples. Using the learned gating network maintains the modularity
property, allowing it to be used for different restoration tasks. Once again, results are very similar to
the full inference computation.

noisy CSF5
7×7 EPLLgating

PSNR: 20.17 30.49 30.51
running-time: 230sec. 83sec.

Figure 7: Denoising of a 18mega-pixel image. Using the learned gating network and a stride of 3,
we get very fast inference with comparable results to discriminatively “end-to-end” trained models.

Finally, figure 7 shows the result of performing resotration on an 18 mega-pixel image. EPLL with
a gating network achieves comparable results to a discriminatively trained method (CSF) [18] but is
even more efficient while maintaining the modularity of the generative approach.

5 Discussion

Image restoration is a widely studied problem with immediate practical applications. In recent years,
approaches based on machine learning have started to outperform handcrafted methods. This is true
both for generative approaches and discriminative approaches. While discriminative approaches of-
ten give the best performance for a fixed computational budget, the generative approaches have the
advantage of modularity. They are only trained on clean images and can be used to perform one of
an infinite number of possible resotration tasks by using Bayes’ rule. In this paper we have shown
how to combine the best aspects of both approaches. We discriminatively train a feed-forward archi-
tecture to perform the most expensive part of inference using generative models. Our results indicate
that we can still obtain state-of-the-art performance with two orders of magnitude improvement in
run times while maintaining the modularity advantage of generative models.
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Abstract

Cameras that can measure the depth of each pixel in addition to its color have be-
come easily available and are used in many consumer products worldwide. Often
the depth channel is captured at lower quality compared to the RGB channels and
different algorithms have been proposed to improve the quality of the D channel
given the RGB channels. Typically these approaches work by assuming that edges
in RGB are correlated with edges in D.
In this paper we approach this problem from the standpoint of natural image statis-
tics. We obtain examples of high quality RGBD images from a computer graphics
generated movie (MPI-Sintel) and we use these examples to compare different
probabilistic generative models of RGBD image patches. We then use the gener-
ative models together with a degradation model and obtain a Bayes Least Squares
(BLS) estimator of the D channel given the RGB channels. Our results show that
learned generative models outperform the state-of-the-art in improving the quality
of depth channels given the color channels in natural images even when training
is performed on artificially generated images.

1 Introduction

Figure 1: Examples of RGBD images from the NYU Depth V2 datatset. The depth channel often
contains missing values and the depth is typically of lower resolution and more noisy than the RGB.
In this paper we approach the problem of improving the D channel given RGB using natural image
statistics.

Figure 1 shows examples from the NYU Depth V2 dataset [1]. Each scene is captured with a Kinect
sensor and a color image is available along with a depth image. Ten years ago it may have been
hard to believe that a depth image of such quality will be attainable with a sensor that costs less than
200 dollars, but today RGBD cameras are ubiquitous and have enabled a large suite of consumer

1



applications. Despite the impressive improvement in RGBD technology, the quality of the depth
channel is still lacking. As can be seen in the figure, the depth channel often has missing pixels.
Many of these missing pixels occur at object discontinuities where the different sensors used to
measure depth have a viewpoint disparity. Others occur at specular objects. In addition, the depth
image is often noisy and at a poorer resolution compared to the RGB channels.

In recent years, several authors have proposed improving the quality of the D channel based on
the RGB channel [2, 3]. The vast majority of these approaches are based on assuming that depth
edges are more likely to occur at intensity edges and this leads to a natural use of the joint bilateral
filter [4, 5]. Silverman and Fergus [1] used the colorization by optimization framework of Levin et
al. [6] to obtain a weighted least squares problem for filling in missing pixels where the weights are
based on the assumption that neighboring pixels with similar colors should have similar depths.

As pointed out by Lu et al. [7], the assumption of correlation between color edges and depth edges
may be insufficient to improve the quality of the depth image. In particular, they pointed out that
both the color and the depth image are often subject to noise and that previous approaches did not
handle this noise well. They suggested a statistical model of RGBD patches which is based on the
assumption that similar patches in the image define a low rank matrix. Their approach outperformed
approaches such as joint bilateral filtering, even when the color image was first denoised using a
denoising algorithm.

In this paper we approach the problem of RGBD restoration from the standpoint of natural image
statistics. We are motivated by the success of learning based methods that achieve excelllent perfor-
mance in image restoration [8, 9, 10] by learning from a large database of clean images. In the case
of RGBD the challenge is to obtain clean examples and we take advantage of a computer graphics
generated movie (MPI-Sintel [11]) for this task. We use the clean examples to compare existing
approaches and to learn new generative models for the patches. We then use the generative mod-
els together with a degradation model and obtain a Bayes Least Squares (BLS) estimator of the D
channel given the RGB channels. Our results show that learned generative models outperform the
state-of-the-art in improving the quality of depth channels given the color channels in natural images
even when training is performed on artificially generated images.

2 Density models for depth

All methods for depth enhancement incorporate some assumption about the depth itself and some-
times about its dependence on the color channels. Typical assumptions are that the depth is usually
smooth and that depth boundaries are correlated to color boundaries.

One way to compare different assumptions is to formulate them as density models for depth. Instead
of using depth values in meters, we use the common representation of 1/depth or disparity. This
has the advantage that background pixels with depth infinity which are very common translate to a
mode in zero, and the precision is higher for closer objects.

We will evaluate the following density models, where d is a vector of disparity pixels:

DL2
The smoothness is modeled by giving a quadratic penalty to the spatial derivatives of disparity:

J(d) =
∑

p

dx(p)
2 + dy(p)
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where dx(p) and dy(p) are the x and y derivatives of disparity at pixel p. This can be formulated
as a multivariate Gaussian over the disparity using a matrix A that takes all the derivatives of d. To
make the covariance positive definite we add the indentity matrix times a small constant.

Pr(d) =
1

Z
e−λ

∑
p dx(p)2+dy(p)2 ≈ 1

Z
e−d

>(λA>A+εI)d (1)

DL1
The smootheness is modeled by giving an absolute value penalty to the spatial derivatives of dispar-
ity:

J(d) =
∑

p

|dx(p)|+ |dy(p)|
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Figure 2: The Sintel dataset. Top: color images. Bottom: disparity=1/depth images. Using high
quality depth images allows us to evaluate and learn density models.

This can be formulated as a multivariate Laplacian over d using the same derivative matrix A as
above:

Pr(d) =
1

Z
e−λ

∑
p |dx(p)|+|dy(p)| ≈ 1

Z
e−‖(λA+εI)d‖1 (2)

Here the normalization cannot be computed in closed form, making this model hard to use for
measuring likelihood.

DL2|int
Here we use a weighted quadratic penalty on the derivatives of disparity, where the weights w(p)
depend on the color image:

J(d) =
∑

p

wx(p) dx(p)
2 + wy(p) dy(p)

2

In order to encourage disparity edges to correlate with color edges, the weights are computed as a
function of the color derivatives in the same location cx(p) and cy(p) as following:

wx(p) = e−
1
σ2
cx(p)2 wy(p) = e−

1
σ2
cy(p)2

giving derivatives that cross color edges a lower weight. This is the model of the colorization by
optimization code [6] used in [1].

The model can be formulated as a conditional multivariate Gaussian over d using the same derivative
matrix A and an additional diagonal weight matrix that depends on the color W (c):

Pr(d|c) = 1

Z
e−λ

∑
p wx(p)dx(p)2+wy(p)dy(p)2 ≈ 1

Z
e−d

>(λA>W (c)A+εI)d (3)

For simplicity, and since we haven’t noticed any significant difference, we reduce the RGB channels
to a single intensity channel.

2.1 Evaluation of density models

The challenge in applying learning techniques to RGBD data is to obtain a large dataset of clean
images. Previous works (e.g. [12]) used the output of a depth sensor in order to estimate the statistics
but these statistics themselves may already be corupted. Here we use a highly realistic computer
graphics generated dataset, the MPI-Sintel dataset [11] (figure 2). We divided the 23 scenes of
Sintel to 16 training set scenes and 7 test set scenes. We follow roughly the approach of Rosenbaum
and Weiss [13] and use the training set to tune the parameters λ and ε for each model and we use the
test set to evaluate the different models.

2.1.1 Likelihood

The first way to evaluate the density models is by the likelihood on the test set. Since all density
models need to integrate to 1 over all possible values, models that give high likelihood to a set of
ground truth disparity images are models that capture frequent properties of the data. Figure 3 shows
the resulting log-likelihood per pixel for the different models. We can see that the log-likelihood for
DL2 and DL2|int are very similar. Since we can’t compute exactly the noramlization contstant of
DL1 we don’t use it here.
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Figure 3: The log-Likelihood of hand-crafted density models and learned density models of dispar-
ity. A GMM model with enough components outperforms other models. Models that are conditioned
on the intensity (shown in green) have a very similar log-likelihood to the unconditional models.

GT DL2 G GMM2 GMM20 GMM500

Figure 4: Patches from the ground truth (GT) vs. patches that were randomaly generated from
different models. For better visibility, the bottom line shows the same patches with the DC sub-
stracted from each patch. Patches generated from a GMM with enough components exhibit similar
properties as the ground truth: patches are usually very flat, and occasionally contain an edge.
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intensity
disparity

Figure 5: Ground truth patches of disparity together with the corresponding intensity patch (all
patches are shown without the DC). The correlation between intensity and disparity is not very
strong: Intensity edges can occur with no corresponding disparity edge (due to texture), and disparity
edges can occur with no corresponding intensity edge (due to motion blur and atmospheric effects).

intensity patch

DL2|int

HMM

Figure 6: Disparity patches genereated conditionally given the intensity patches on the top. The
DL2|int generates patches with edges that match exactly the intensity edge. The HMM can only
approximate the edge form but can capture the distribution in its orientation and translation, and
also the probability that the edge is missing.

2.1.2 Patch generation

A second way to evaluate the models is by using them to generate random data and testing for
the visual similarity with ground truth data. We ommit DL1 from this test again since it does
not allow for closed form generation of samples. Figure 4 shows ground truth 8 × 8 patches and
patches generated from DL2. For better visibility we show all patches also with their DC (average
value) subtracted. Looking at the ground truth disparity patches we can see that it is usually flat but
occasionally contain a boundary edge. In comparison, patches generated from DL2 are a bit noisier
and contain no structure.

In figure 5 we show the relationship between the disparity and intensity. The ground truth patches
of disparity are shown together with the corresponding intensity patch. It can be seen that the
relationship is not straightforward. First, in some cases both patches contain some structure which
is not exactly correlated. Second, there are intensity edges without a corresponding disparity edge
and there are disparity edge without a corresponding intensity edge. While the first direction can be
attributed to many texture edges in intensity, the second direction which is perhaps more surprising
is due to motion blur and atmospheric effects which are real effects that are deliberately modeled in
the Sintel dataset1.

Figure 6 shows patches generated from DL2|int given 3 different patches of intensity. The generated
patches usually match the intensity patch exactly, and sometimes do not contain a visible structure.
The advantage of the patches generated with DL2|int over patches of DL2 is evident since it alows
for spatial structure that is very similar to the ground truth patches, however it is not clear whether
the dependence on the intensity is modeled correctly.

2.1.3 Patch restoration

A third way to evaluate density models is to use them in inference tasks and measure the quality
of the results. Given ground truth patches we add noise using a known noise model and use Bayes

1we use Sintel’s final pass of the intensity channel.
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Figure 7: Patch denoising with different noise levels (average PSNR in dB). GMMs with enough
components outperform all other models. Conditioning on the intensity does not lead to a significant
improvement.

Least Squares (BLS) to estimate the clean patches again. We measure the quality of the estimation
using the PSNR = 10log10(1/L), which is a function of the average squared loss over all restored
patches:

L({d̂}) = 1

N

N∑

i=1

‖d̂i − di‖22

If the patches were generated from a known density model, then BLS inference with the true model
would result in the optimal PSNR. Therefore we expect that BLS inference with models that are
closer to the true density will result in a bigger PSNR.

Figure 7 shows the PSNR of BLS patch denoising using white Gaussian noise with 2 different
standard deviations. Once again we cannot perform BLS inference using DL1 in closed form, instead
we perform maximum a-posteriori (MAP) inference. We see that DL1 outperforms DL2 even though
it is used with MAP inference which is sub-optimal. Figure 7 also shows that conditioning on the
intensity does not lead to a significant improvement in patch denoising.

In figure 8, we show the results of patch inpainting where most of the patch is hidden and only
4 pixels in 2 corners are visible. This is equivalent to denoising with a noise model of very large
variance in the hidden pixels. Here we see that conditioning on the intensity does lead to a significant
improvement in the PSNR. The images on the bottom show some examples of the intensity, disparity,
occluded disparity and restored disparity patches. We see that DL2|int does very well when there is
a strong match between the disparity and intensity.

3 Learning density models

A natural question at this point is if we can use the available training set to learn better models
of the disparity. Following the success in learning Gaussian Mixture Models (GMM) for natural
image priors [8] and optical flow [13], we train a GMM model with a fixed mean and full covariance
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Figure 8: Patch inpainting: average PSNR in dB (top) and examples of restored patches (bottom).
Conditioning on the intensity leads to a significant improvement. The HMM learned model outper-
forms all other models.

matrices over patches of 8× 8 pixels:

Pr(d) =

K∑

k=1

π(k)
1

Zk
e−

1
2 (d−d0)>Σ−1

k (d−d0) (4)

We use the expectation maximization (EM) algorithm for training. The GMM has many parameters
so we emphasize that the different evaluations are performed on a held-out test-set that was not used
for training.

Figure 3 shows the log-likelihood on the test-set for a single Gaussian (G) and GMMs with a differ-
ent number of components along with the hand-crafted models. We see that the Gaussian has a very
similar log-likelihood to DL2, and that GMMs with enough components outperform other models.

Figure 4 shows patches that were randomly generated using the single Gaussian and the different
GMMs. We see that (1) G has a very similar behavior as DL2, (2) GMM2 has mostly very flat
patches and occasionally a noisy one, and (3) GMM100 and GMM500 capture the property that
whenever a patch is not flat, it is likely to contain an edge with a certain orientation and translation.
The patches generated by GMM500 appear very similar to the ground truth patches.

Figure 7 and Figure 8 show that also in terms of patch restoration, a GMM with enough components
outperforms any independent model (which does not depend on intensity), however even a GMM
with 500 components is outperformed by DL2|int when the dependence on intensity is critical, like
in inpainting. The bottom image in figure 8 shows that it is hopeless to expect an independent model
to recover some of the patches given only 4 visible pixels. In the next section we describe a learned
conditional model, but first we elaborate on the GMM.

The GMM is a model with a single discrete hidden variable which is the index of the Gaussian
component. This hidden component has a prior distribution which is the mixing-weights. The
division of the 64 dimensional space of disparity patches into different components can be seen
as a way to concentrate the density around different subspaces. Figure 9 shows how the space is
divided as we train GMMs with more components: The first line shows what a single Gaussian
learns. On the left we show the leading 5 eignevectors of the covariance matrix and on the right we
show patches generated from the Gaussian. As we’ve seen before the behavior is very similar to
DL2 which is also a Gaussian model. The second and third line show the leading eignevectors of the
covariance and generated samples from the 2 components of GMM2. We see that there is an explicit
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Figure 9: Leading eigen-vectors and generated samples from the single Gaussian, from the 2 compo-
nents of GMM2 and from some of the components of GMM100. As more components are used, the
GMM learns to explicitly model flat patches and edges with different orientations and translations.

division between very flat patches that occur in probability 0.82 (as shown by the mixing weight on
the left), and noisy patches in probability 0.18. When we train GMMs with more components we
see the explicit assignment of every component to either a flat patch or to a patch with an edge in a
certain orientation and translation. We show here only a subset of 5 components.

3.1 Learning the dependence on intensity

In order to capture a possible dependence on intensity, we train on top of the GMM500 another
model called an HMM as was done in [13]. The HMM is built of 2 GMMs: the first is a GMM
over the intensity like in [8], and the second one is a GMM over the disparity but instead of having
independent mixing weights (i.e. a prior on the component), the disparity component depends on
the intensity component through a transition matrix. The HMM is equivalent to having a GMM
model over the disparity with mixing weights that change according to the intensity. Since the
intensity GMM also assigns different components to different orientations and translations of edges,
this allows the occurrence of intensity edges to give a higher prior for disparity edges in the same
orientation and translation.

Looking at the generated samples in figure 6 we see that this is exactly what the HMM does. Given
an intensity edge, disparity edge components with similar orientation and translation become more
likely. Note that this intensity dependent prior is ‘soft’ and allows also flat patches and edges in very
different orientation and translation to occur but in a lower probability. If we compare the HMM
samples to the DL2|int samples we see that DL2|int has the advantage of being able to exactly match
the intensity edge however it lacks the power of the HMM to model the non-negligible probability
of similar orientations and translation of edges as the ground truth data also exhibits in figure 5.

In terms of log-likelihood and patch restoration, the HMM model is superior to all other models
in all the different evaluations. It has similar results to the GMM500 in log-likelihood (figure 3),
and patch denoising (figure 7), and outperforms it when the dependence on intensity is needed for
inpatining (figure 8). For inpainting it also outperforms the hand-crafted conditional model DL2|int.

4 Disparity estimation in full images

Given the superior performance on patches, we would like to use the learned models to perform
disparity estimation in full images. As long as the degredation in disparity is local and contains
noise and small holes, a simple approach is to perform patch restoration on all overlapping patches
in the image and average the results over overlapping pixels. However, when there are big holes
as in the dataset used in [7], global inference is needed. While the hand-crafted models DL2, DL1
and DL2|int can be extended to a full image model, for the GMMs it is not feasible. The reason
is that extending a mixture model over patches to an image with thousands or milions of patches
would require to go over all the combination of mixture components. Moreover, since the model
was learned over patches it cannot capture the depndence between neighboring (or even overlapping)
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Figure 10: BLS vs MAP inference for the GMM500 (blue) and HMM (green) models. MAP infer-
ence is inferior in both patch denoising and inpainting.

combined-BLS colorization LRC JBF NLM SGF SHF GIF
40.2 36.7 39.3 37.9 37.2 33.9 36.5 37.0

Table 1: Average PSNR (dB) of combined-BLS, colorization and the methods compared in [7].

patches. One option is to treat all patches as independent and perform global MAP inference. This
is shown to work succefully in the EPLL framework of [8]. Another implementation of global MAP
inference can be done using the EM-MAP method [14]. This is performed iteratively by building a
sparse inverse covariance matrix over the whole image and inverting it in each iteration.

However, one drawback of these methods is that even if the optimization succeeds, the MAP solution
is not guarenteed to have good performance even for good density models. In fact, if we evaluate
the result of MAP inference over patches we see that it is significantly inferior to BLS inference
(see [15] for a similar result in image restoration). Figure 10 shows that the performance drops for
both denoising and inpaintining once we turn to MAP inference. For inpainting we see that the gap
between the HMM and the GMM, which was due to the dependence on intensity, disappears. The
performance of HMM-MAP is also worse than the performance of DL2|int (for which MAP and
BLS inference are the same).

Therefore, in order to restore a given disparity image that contains noise and holes, we do the
following 2 steps:

1. We perform BLS inference using the HMM over all overlapping patches in the image and
average the results over overlapping pixels.

2. Using the resulting image, we perform global BLS inference on the large holes using the
DL2|int model.

We run this procedure, on the online availabe dataset used by Lu et al [7] which consists of 30
images from Middlebury [16] and 9 images from the RGBZ dataset [17]. The noisy intensity image
is denoised using EPLL [8]. We compare our proposed method, termed combined-BLS, to the global
colorization method used by [1] (equivalent to performing only global inference with DL2|int),
and to the methods that were compared in [7]. These methods include the Joint Bilateral Filter
(JBF) [5] and the LRC method of Lu et al. that assumes that concatenated vectors of disparity
patches and corresponding color patches lie in a low rank subspace. Our proposed method acheives
an improvement in average PSNR of almost 1dB over the state-of-the-art results of LRC.

Table 1 shows the average PSNR of the methods: combined-BLS (our method), colorization, and
the different methods that were compared in [7]. Figure 11 shows examples of our results compared
to LRC and the colorization method. We emphasize that even though the models were trained on the
synthetic data of Sintel, we acheive a significant improvement on the Middlebury+RGBZ dataset of
real images.
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LRC (41.38) colorization (37.89) combined-BLS (42.22)

noisy intensity GT disparity noisy disparity

LRC (36.44) colorization (35.88) combined-BLS (37.96)

Figure 11: Examples of disparity images enhanced with LRC, colorization and combined-BLS.
PSNR values are in dB.
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5 Discussion

An advantage of using learning based approaches for vision is that we can compare what is learned to
assumptions commonly made by Computer Vision researchers. The majority of previous approaches
to improving D given RGB used the assumption that depth edges are correlated with intensity edges
and assumed very little additional structure on the depth. In this paper we have shown that a genera-
tive model that is learned from ground truth RGBD patches indeed finds a correlation between depth
edges and intensity edges but this correlation is relatively weak. At the same time, the generative
model learns very strong structural constraints on the depth: that depth patches are usually either
flat or edges. By using a learned model that combines both the depth structure and the correlation
with intensity we were able to outperform the state-of-the-art in improving the quality of the depth
channel given RGB. Even though our training was performed on synthetic images, we gained a
significant advantage (about 1dB on average) in restoring real images.
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Chapter 3

Discussion

The work presented in this dissertation, demonstrates different ways in which machine learning can be
used in low level vision problems. The basic approach we use is the generative approach, modeling the
generation of the data and the observation. However, we show that by also learning the inference, deter-
mining the way in which the generative models will be used at test time, we can benefit from advantages
usually associated with a direct discriminative approach.

In the work presented in 2.3, we show that typically what makes the inference hard is the need to
predict the state of the hidden variables in generative models. This idea has already been present in the
Helmholtz machine by Dayan et al. [10], which is a hierarchical feed-forward generative model coupled
with a “backwards” inference network. This generative model can easily be used for sampling data from
the modeled distribution, however, since it consists of several layers of hidden states, it is not practical
for inference - computing the posterior probability of the hidden variables requires the integration over
all hidden states. The inference model is used to overcome this difficulty by approximating the posterior
of hidden states.

The original paper from 1995 showed how the generative and inference models can be trained together
using the Wake-Sleep algorithm. Later however, it was shown that this training method is not good
enough and results in models that are worse than simple tractable models [16], and this direction was
largely abandoned. In recent years, there has been a resurgence of the Helmholtz machine idea using
new training methods, first with a variational inference approach [25, 37], and later by making some
modifications to the original Wake-Sleep method [4].

However, in all of the above examples, the inference model is used only to allow an efficient training
of a complex generative model. Perhaps a more fundamental aspect of learning the inference comes from
the basic trade-offs of using prior knowledge in both the generative and discriminative directions. When
approaching a new problem there can be different kinds of prior knowledge. In the generative direction:
the noise model can be given in advance, some knowledge about the causal relationships of variables etc.;
but there is also prior knowledge in the inference direction, regarding how the inference will be carried
out, e.g. running time and hardware constraints. Making the choice to either use a generative approach
or a discriminative approach means that some of the prior knowledge is thrown away.

As an illustration, think of the problem of estimating x when the observed data is known to be gen-
erated by y = Ax + ξ where both A and the statistics of the noise ξ are known, and in addition, there is
a constraint that the inference should be a linear predictor. Given a training set of x, y pairs, what is the
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best approach to train the linear predictor? If we just search for the best linear predictor on the training
data, then the knowledge of the noise process is not used, but if we just fit a model to x it is not clear how
to use it to come up with a good linear predictor.

In our work we give a simple example of how this trade-off can be solved for image restoration
with mixture model priors, where predicting the hidden state boils down to choosing which mixture
component to use, also termed “gating”. However I think that the idea of learning both the generative and
the inference directions can be effectively applied in different ways to more complex models and to many
additional problems.

3.1 Future work

Learning global inference with local generative models

A major factor in the difficulty to find good models for natural images and low level vision comes from
the large dimension of data. The EPLL method [48] shows that sometimes good local models of small
patches can be more useful than approximate global models of the whole image. In the EPLL method the
local models are combined when performing global inference over the whole image, using a very simple
and naive approximation - that all patches are independent. This assumption clearly doesn’t hold since
neighboring patches have a strong dependence, and even more so, overlapping patches that share many
pixels.

Provided that learning good models for bigger patches and whole images still isn’t successful, one
way to improve the inference is to learn the best way to combine the patch models at inference time.
Instead of assuming that models are independent, or trying to model the dependency, it might be more
useful to directly learn how to perform global inference with the local models. For example, the work
in 2.3 could be extended by learning gating networks that depend on the whole image or at least larger
patches, i.e. when using mixture models such as GMMs over patches, predicting the posterior of the
mixture components could depend on the whole image rather than the patch alone. This will capture
the dependency between neighboring patches, for example when a patch is located on a long edge that
crosses the image, the posterior probability that the patch also contains an edge will increase.

Learning the inference for optical flow estimation

In the work presented in sections 2.1 and 2.2, we show how to improve the energy function for optical
flow estimation. Using the ground-truth data of the MPI-Sintel dataset [8] we learn prior models and
noise models and show that they are better than existing models used in common optical flow estimation
methods. The models that we learn and evaluate are on small patches, and while for small patches we see
their superiority over other models in terms of likelihood and different inference tasks, when trying to use
these models for full optical flow estimation over whole images we don’t see an improvement relative to
common methods.

Two possible reasons for that are: (1) Unlike common image restoration problems, in optical flow
the “noise” model Pr(I2|I1, v), that generates the observed second frame given the first frame and the
flow field, is very non-local. Objects can move from one side of the image to the other and so using
only local models that look at small patches might be too naive. (2) Optical flow energy functions are
hard to optimize and require many optimization heuristics such as coarse-to-fine iterations, Newton steps
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which include the linearization of the warping function etc. The hope that improving the energy function
will lead to better results stems from the assumption that all the relevant knowledge for optical flow
estimation is encoded in the energy function and the rest is just optimization. This assumption might
simply be not true, and possibly optical flow methods succeed because their optimization heuristics are
specially tailored for optical flow and in a way encode additional assumptions about the solution than the
energy function.

A possible way to extend the work in sections 2.1 and 2.2 is to learn the inference, i.e how to use
the learned models for optical flow estimation of whole images. Specifically by “unrolling” an inference
process on the learned models which includes coarse-to-fine iterations, linearization of the warping and
gating the components in the learned mixture models, the parameters of those operations can be learned
discriminatively by minimizing the loss of the inference output compared to the ground-truth.
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 תקציר

 
הוא הרצוי הפלט בסרט, תמונות בין תנועה שיערוך או תמונה שחזור כמו ראשונית ראייה של                 בבעיות
לפתרון ניתנות אינן הזה מהסוג הבעיות רוב דוממדי. מבנה בעל רבממדי מידע המכילה תמונה                בעצמו
פיתוח על מקשים טבעיות בתמונות שמצוי העשיר והמבנה הגבוה הממד הפלט. על נוספות הנחות                ללא
השימוש מנתונים. ישירות נלמדות ההנחות בהם מידע, מבוססות גישות ומזמינים פתרון שיטות של               ידני
בתמונות המצוי המבנה את ולנצל ללמוד מאפשר והוא אלה, לבעיות טבעי לפיכך הוא חישובית                בלמידה
אל הוביל לא עדין ראשונית ראייה של בבעיות חישובית בלמידה השימוש כה, עד אולם אוטומטי.                 באופן
של אלו על עולות התוצאות תמונה שחזור כמו יותר קלות בעיות שעבור למרות הצפויים.                השיפורים
מידע מבוססות גישות של הביצועים תנועה, שערוך כמו יותר קשות בעיות עבור ידנית, מהונדסות                שיטות

 כמו גם אלה של הגישות המהונדסות עדיין לא מספקים.
 

המידע של המבנה על ההנחות הגנרטיבית, בגישה שונות. בדרכים חישובית בלמידה להשתמש              ניתן
בשימוש הסקה כבעיית מתבצע השערוך מכן לאחר מנתונים. שנלמדים הסתברותיים כמודלים             מנוסחות
הצורך נמנע וכך מסוימת, לבעיה המשערך את ישירות לומדים הדיסקרימינטיבית, בגישה בייס.              בחוק
בה לנסח טבעי יותר שלפעמים הוא הגנרטיבית בגישה היתרון מבחן. בזמן הסקה של תהליך                בביצוע
שינוי ידי על במשערך מודולרי לשימוש ואפשרות יותר מהיר לאימון שמוביל מה המידע, על שונות                 הנחות
למשערך מובילה היא שלרוב הוא הדיסקרימינטיבית בגישה היתרון מבחן. בזמן שלו שונים מרכיבים               של
אופטימיזציה בעיית מכיל לרוב גנרטיבי מודל עם הסקה שתהליך שבעוד משום קורה זה יותר.                מהיר
ידי על האימון בזמן מראש מתבצעת האופטימיזציה כל הדיסקרימינטיבית, בגישה מבחן, בזמן              קשה

 מציאת המשערך הטוב ביותר בהינתן ארכיטקטורה ואילוצים שונים על זמן הריצה.
 

עבור חישובית בלמידה להשתמש ניתן בהן השונות הדרכים את מדגימים אנו כאן, שמוצגת               בעבודה
לשלושה אותה לחלק ניתן הגנרטיבית, הגישה על יותר כללית בהסתכלות ראשונית. ראייה של               בעיות
(2) לשערך, רוצים אותו החבוי המידע על המקדימות ההנחות את שמנסח אפריורי מודל (1)                מרכיבים:
תהליך ו(3) החבוי, המידע בהינתן הנראה הקלט נוצר בו האופן על ההנחות את שמנסח הנראות                 מודל

 ההסקה אשר משתמש במודל האפריורי ובמודל הנראות כדי לשערך את המידע החבוי.
 

הנחות לחלץ ניתן איך מראים אנו והשני הראשון במאמר מאמרים. בארבעה מוצגות שלנו               התוצאות
נראות. ומודלי אפריוריים כמודלים אותן ולנסח תנועה שערוך של ידנית מהונדסות שיטות מתוך               שונות
ממידע ישירות יותר טובים מודלים ללמוד ניתן כיצד ומראים השונים המודלים את בוחנים אנו מכן                 לאחר
תהליך את מנתונים ישירות ללמוד ניתן אפריורי, מודל בהנתן איך מראים אנו השלישי במאמר                אמת.
הגישות של היתרונות את שמשלב למשערך מובילה שהשיטה מראים אנו תמונה. שחזור עבור               ההסקה
המודולריות תכונת את משמר וגם מבחן בזמן מהיר גם שהוא בכך והגנרטיבית,              הדיסקרימינטיבית
מחודש. אימון ללא טשטוש, והסרת רעשים ניקוי כמו שונות שחזור בעיות עבור שימוש               שמאפשרת
בחינה ידי שעל מראים אנו .RGBD במצלמות עומקים מפת שיפור בבעיית עוסק הרביעי               המאמר
עבור הקיימות מהשיטות יותר טובות תוצאות להשיג ניתן אמת, במידע בשימוש מודלים של               ולמידה

 שיפור מפת עומקים.
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